
Parallel garbage collection for SBCL
Hayley Patton, 25 April, 2023



Outline

• I’ve implemented a new garbage collector for SBCL.
• The collector can use multiple cores, and it can sometimes run faster by not
copying objects.

• It uses new approaches to conservative root finding and non-moving generational
garbage collection.

• It should still move objects sometimes, which is part of why it’s not in upstream yet.
• But it also should be easier to make (mostly) concurrent, as it doesn’t need to
move objects too frequently.



The current SBCL collector
SBCL uses a generational conservative garbage collector (gencgc). It reclaims most
memory by copying the live objects, leaving large spans of free space.
A simple copying collector copies objects from one space to another, with each
semi-space being half the size of the heap. The application can allocate objects by
incrementing a pointer (bump allocation), which starts at the end of the last object.

From

To

To

From

Allocation range



The current SBCL collector
SBCL uses a generational conservative garbage collector (gencgc). It reclaims most
memory by copying the live objects, leaving large spans of free space.
A simple copying collector copies objects from one space to another, with each
semi-space being half the size of the heap. The application can allocate objects by
incrementing a pointer (bump allocation), which starts at the end of the last object.

From

To

To

From

Allocation range



The current SBCL collector

SBCL doesn’t use two contiguous spaces however; instead it partitions memory into
pages, which are assigned to spaces using a table. Pages are also assigned to
different generations and types.
The application bump allocates until the allocation pointer reaches the end of a page.
The application finds a suffix of another page to allocate into, after using all the space
in a page.

New Old Free



Strengths and weaknesses of gencgc

• Strength: Copying avoids fragmentation.
But real applications don’t fragment that much, so it’s mostly wasted effort.
Copying also requires “wasting” space to copy into.

• Strength: Bump allocation is simple and fast.
But we can bump allocate with other algorithms.

• Weakness: Copying requires more memory accesses than other algorithms
which don’t move objects.

• Weakness: Parallel copying requires careful synchronisation, and copying might
hit memory bandwidth limits with fewer threads.
But if there are few live objects (common in generational GC), copying does less
work than algorithms which scan the whole heap somehow.



Workarounds

• We could increase the size of the heap, to make the garbage collector run less
frequently, to improve throughput. But this doesn’t scale when parallelising a
program. Also locality of reference concerns.

• Increasing the size of the heap also makes the time between pauses longer, but
doesn’t shorten pauses, which doesn’t help latency much.

• Avoiding generating garbage tends to hinder modularity and simplicity; “liveness
is a global property.”



Mark-region garbage collection
• We instead implement a mark-region collector, similar to Immix. The collector can

reclaim memory without moving objects, and the application can still
bump-allocate.

• Pages are partitioned again into smaller lines, each 128 bytes, which the collector
can individually reclaim. The application bump-allocates into runs of free lines.

• The collector traces through every live object in-place, and then reclaims lines
unused by any live objects.



Tracing

• Tracing recursively visits all objects which the application could possibly access.
We speak as if objects have colours: objects not visited are white, objects visited
but not recursively traced yet are grey, objects which were recursively traced are
black.

• A semi-space collector represents the grey and black sets using contiguous
ranges of to-space. (Cheney’s algorithm; it’s somewhat trickier when using pages,
but the basic idea remains.)

• Other tracing collectors require the set to be represented in a different way. We
instead use a list of packets of grey objects (following Ossia et al).
At most this list used 3.7MB of memory in testing.



Parallel tracing

• Multiple threads can be used to trace objects. Each thread is both a producer and
consumer of grey objects.

• Each thread thus has an input packet of objects which the thread will trace
(shading from grey to black), and an output packet of objects that the thread
discovered during tracing (shading from white to grey). Thus threads only
synchronise when getting new packets.

• Threads can also use software prefetching to cover up memory latency.



Conservative root finding

• Tracing starts with marking the objects immediately accessible by the application
(the roots). Roots include lexical and special variables and some global data
structures such as tables of packages and classes.

• SBCL can use boxed values, which are stored with type tags, and unboxed values
without tags (such as 64-bit integers and double-floats).

• The collector must correctly handle unboxed values, despite the compiler not
generating any description of which registers and stack locations have unboxed
values.

• Thus the collector has to stomach unboxed integers and double-floats somehow.



Conservative root finding
Suppose we have a “raw” value which looks like a pointer into some page.

A copying collector can step over each
object until it finds the pointer, as objects
are contiguous.

A non-copying collector can consult a
bitmap which indicates where objects start.

But our objects aren’t contiguous.

Actually,
objects the application just allocated are
contiguous.

But it takes time to write into the bitmap,
and requires more code outside x86.

But
we don’t have to write all the objects.



Conservative root finding
Suppose we have a “raw” value which looks like a pointer into some page.

A copying collector can step over each
object until it finds the pointer, as objects
are contiguous.

A non-copying collector can consult a
bitmap which indicates where objects start.

But our objects aren’t contiguous. Actually,
objects the application just allocated are
contiguous.

But it takes time to write into the bitmap,
and requires more code outside x86. But
we don’t have to write all the objects.



Lazy object mapping
• The allocator marks lines it just
allocated into as fresh, and the
garbage collector clears this mark
during collection.

• We usually consult a bitmap to find an
object, but when a raw value points
into a fresh line (shaded green), we
find the enclosing run of fresh lines,
and compute the bitmap for that
range.

• Most objects die young, and most
objects aren’t referenced from the
registers and stack locations, so fewer
bits need to be set. (At most 600KB
in testing.)

Lines

Map

Heap



Lazy object mapping
• The allocator marks lines it just
allocated into as fresh, and the
garbage collector clears this mark
during collection.

• We usually consult a bitmap to find an
object, but when a raw value points
into a fresh line (shaded green), we
find the enclosing run of fresh lines,
and compute the bitmap for that
range.

• Most objects die young, and most
objects aren’t referenced from the
registers and stack locations, so fewer
bits need to be set. (At most 600KB
in testing.)

Lines

Map

Heap



Non-moving generational collection

• Many collectors are generational; they separate old and new objects and collect
the new objects more often.

• In practise the new objects usually die sooner, so collecting just new objects is
more effective at reclaiming memory.

• But we need to partition objects by generation. The copying collector assigns
each page a generation.

• We need to remember pointers from old objects to new objects, in order to
collect just new objects correctly. We continue to use the card marking scheme,
where we mark that a range of memory (a card) was dirtied and have GC
scavenge old objects on dirty cards.



Non-moving generational collection

If we just assign each page a generation, we can’t reuse any memory on an older
page until no objects reside on it.

NewOld



Non-moving generational collection

If we just assign each page a generation, we can’t reuse any memory on an older
page until no objects reside on it.

NewOld



Non-moving generational collection

If we just assign each page a generation, we can’t reuse any memory on an older
page until no objects reside on it.

NewOld



Non-moving generational collection

If we just assign each page a generation, we can’t reuse any memory on an older
page until no objects reside on it.

NewOld



Non-moving generational collection

We could assign each object a generation, but then it becomes harder to discern
writes to old and new objects on the same card. (Demers et al call it card pollution.)
We also can’t store generation IDs in objects, as there’s no room in cons cells. A side
table with a space for every possible object address would be quite large ( 1

16 of the
heap on x86-64).

CleanDirty

New Old



Non-moving generational collection

We could assign each object a generation, but then it becomes harder to discern
writes to old and new objects on the same card. (Demers et al call it card pollution.)
We also can’t store generation IDs in objects, as there’s no room in cons cells. A side
table with a space for every possible object address would be quite large ( 1

16 of the
heap on x86-64).

CleanDirty

New Old



Non-moving generational collection

Solution: make lines the same size as cards.
• We don’t lose any precision in reclaiming memory; we already can’t reclaim parts
of lines.

• We don’t lose any precision in tracking updates; we can’t have different
generations on the same line.

It’s also very convenient to locate dirty and old cards; single instruction-multiple data
instructions work really well here. One byte per line yields just a 1

128 space overhead.



Non-moving generational collection

Solution: make lines the same size as cards.
• We don’t lose any precision in reclaiming memory; we already can’t reclaim parts
of lines.

• We don’t lose any precision in tracking updates; we can’t have different
generations on the same line.

It’s also very convenient to locate dirty and old cards; single instruction-multiple data
instructions work really well here. One byte per line yields just a 1

128 space overhead.



Benchmarks

• I chose perhaps rather odd benchmarks - the cl-bench benchmark suite doesn’t
generate much work for the garbage collector.

• But boehm-gc from the suite can be scaled easily.
• We can’t really scale down the heap to introduce strain, as cache memory would
become too effective to be representative of larger applications.

• So I chose two micro-benchmarks (boehm-gc and ring-buffer) and two
macro-benchmarks (Kandria and Regrind).

• All benchmarks except for Kandria ran on a VM on a Threadripper 1950X with 12
cores.



boehm-gc

boehm-gc creates many large binary trees, which the GC must trace. It produces no
fragmentation, as all nodes in all binary trees die at once.

2 3 4 5 6 7 8

30

35

40

45

Heap size (GB)

Re
al

tim
e
(s
)

real time

2 3 4 5 6 7 8

5

10

15

20

Heap size (GB)

Re
al

tim
e
(s
)

GC time

gencgc MR, 1 thread MR, 2 threads
MR, 4 threads MR, 12 threads

2 3 4 5 6 7 8

24

25

26

Heap size (GB)

Ru
n
tim

e
(s
)

mutator time



ring-buffer

ring-buffer keeps updating a ring buffer with “message” arrays, each about 1 KiB
large. This is a rather unfortunate benchmark for generational copying collectors,
including that of GHC1; as the messages live moderately long and must always be
copied.

0 1 2 3 4 5 6 7 8
0

100

200

300

Heap size (GB)

W
or
st
pa

us
e
tim

e
(m

s)

1https://pusher.com/blog/latency-working-set-ghc-gc-pick-two/

https://pusher.com/blog/latency-working-set-ghc-gc-pick-two/


Kandria

Kandria is a commercial video game from
Shirakumo written in Common Lisp. There
were reports of stuttering on older
hardware, which could be caused by GC.
It generates very few objects which survive
garbage collection, which is great for a
copying collector, but not great for this
mark-region collector.

(No heaps were harmed in the making of this image.)



Kandria
Kandria needs to be run on a computer with graphical output (in part because we
couldn’t get capturing to work, and so I had to play the game myself). I used my
desktop with a Ryzen 5900X processor and RX 580 graphics card, and a 4GB heap
(as is done in the commercial distribution of the game).
Slower hardware was simulated by using tighter frame time limits.

Limit gencgc MR MR MR
1 thread 1 thread 2 threads 4 threads

16ms 0.22% 0.28% 0.27% 0.26%
12ms 0.28% 0.38% 0.35% 0.34%
8ms 0.43% 0.52% 0.50% 0.51%
6ms 2.15% 2.30% 2.21% 2.23%

The mark-region collector suffered from fragmentation, taking 2.9ms to scavenge,
1.9ms to trace, and 1.9ms to sweep on average. 160MB of objects were spread
across 660MB of pages at one point.



Regrind

Regrind is a parallel fuzz tester for the
one-more-re-nightmare regular expression
compiler. It attempts to find cases where
the compiler fails to generate an
automaton, and where the compiler
generates code which attempts to read
out-of-bounds or returns out-of-bounds
results.
Two versions which use the interpreter and
compiler for running automata; the
compiler generates longer-lived objects
and more GC work. Both use static load
balancing and fixed RNGs for
reproducibility.



Regrind, interpreted

Parallel mark-region collection works well in small heaps, but is beat by copying in
large heaps. Not moving produces better mutator performance than copying for
Regrind.
(The mutator times were closer together on my desktop; it might be more
hardware-sensitive.)

1 2 3 4 5 6 7 8
20

22

24

26

28

Heap size (GB)

Re
al

tim
e
(s
)

real time

1 2 3 4 5 6 7 8

2

4

6

Heap size (GB)

Re
al

tim
e
(s
)

GC time

1 2 3 4 5 6 7 8

220

230

240

Heap size (GB)

Ru
n
tim

e
(s
)

mutator time



Regrind, compiled

Parallel collection drastically reduces collection time in compiled Regrind. The
mutator grabs the allocation lock more frequently in larger heaps using mark-region
collection, due to having more densely used pages after a collection.

1 2 3 4 5 6 7 8

10

20

30

Heap size (GB)

Re
al

tim
e
(s
)

real time

1 2 3 4 5 6 7 8
0

10

20

Heap size (GB)

Re
al

tim
e
(s
)

GC time

1 2 3 4 5 6 7 8

70

80

90

100

Heap size (GB)

Ru
n
tim

e
(s
)

mutator time



To do

• The heap should be compacted infrequently. I’ve started implementing an
incremental compaction algorithm, which moves only the most fragmented pages
in one collection.

• SBCL uses a separate immobile space to store some objects using 32-bit pointers,
which we need to implement support for.

• Tracing could be made concurrent, as Ossia et al also have described.



To investigate

• SBCL uses six generations, whereas most garbage collectors just use two. Having
fewer would make compaction somewhat easier.

• It may be worthwhile to use reference counting for the old generations, which
face fewer updates. Reference counting lends itself to an embarrassingly parallel
implementation, whereas tracing doesn’t, and does work proportional to updates
and not objects.

• Thread-local garbage collection schemes may help scalability, may make better
use of cache memory, and avoid global stop-the-world pauses. More important
today with more cores, larger caches, quasi-NUMA due to chiplets, and
(relatively) slower main memory.



Credit where it’s due

• Stas Boukarev and Douglas Katzman helped me get up to speed with how the
garbage collector interacts with the rest of SBCL.

• Steve Blackburn and Kunal Sareen discussed Immix with me.
• Nicolas Hafner helped with auto-vectorisation, and guided me around the
Kandria source code.

• Paul Khuong and Larry Masinter contributed to the design of the internal memory
manager used by the garbage collector.

• Cliff Click helped make sense of the benchmarking results.
• Grindwork Corporation provided me with access to a virtual machine for
benchmarking.

• Jan Moringen, Kunal Sareen, Elijah Stone, and Robert Strandh provided
comments on early versions of the paper.



Thanks!
(Get the collector from https://github.com/no-defun-allowed/swcl, or
slides from https://applied-langua.ge/~hayley/swcl-presentation.pdf)

https://github.com/no-defun-allowed/swcl
https://applied-langua.ge/~hayley/swcl-presentation.pdf

