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ABSTRACT
We describe a parallel garbage collector which we are implementing
for Steel Bank Common Lisp. The collector reclaims memory and
allows for bump allocation without the collector needing to move
objects, using a mark-region heap based on Immix [8]. The heap is
comprised of pages, and pages are comprised of lines. We exploit
the design of Immix in two ways: (i) generations are implemented
without the collector moving objects or recording the generation
in each object, by associating generations with lines; and (ii) con-
servative root finding is implemented by updating an object map
only on demand, based on recording runs of contiguously allocated
objects. The parallel garbage collector using one core usually is
slower than the copying collector of SBCL, outperforms copying
with two cores, and continues to scale with more cores.
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• Software and its engineering→ Garbage collection.
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1 INTRODUCTION
Steel BankCommon Lisp (SBCL) uses a generationalmostly-copying
collector named gencgc. The collector also must conservatively scan
the registers and stacks of the mutator when using the x86 and
x86-64 instruction sets (similar to Barlett’s mostly-copying collector
[4]). The heap is first split into the static, dynamic and immobile
spaces (the last only when using the x86-64 instruction set), with
only the dynamic and immobile spaces ever garbage collected. Al-
most all objects are allocated into the dynamic space. The dynamic
space is split into 32 kibibyte pages; a page may either be used for
storing many small objects, or for storing part of a large object.
Small objects are stored contiguously in pages. gencgc reclaims
memory by copying small objects into empty pages, which causes
the live objects to occupy fewer pages, and by marking large objects
and pages encountered as live without copying.

There are two main inefficiencies with this approach: copying
objects may require more time than marking, and the collector only
uses a single core. The latter can lead to Common Lisp programs
exhibiting poor scalability, to no fault of the programmer. For ex-
ample, one parallel fuzz tester is embarrassingly parallel as tasks
do not share any resources; in a tight heap, the fuzz tester runs
55 seconds of processor time over 12 cores in 5.0 seconds of real
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time, but the collector runs for 10.5 seconds of real time, causing
the program to run for 15.5 seconds of real time, with only a 4.5×
speedup.

While it is possible to improve the throughput of tracing garbage
collection by increasing the size of the heap [1], it can be unde-
sirable to use a heap much larger than the live objects, and it is
not sustainable to need to use more memory in order to maintain
scalability. In order to hold the impact of a serial garbage collector
constant, the heap size may need to grow quadratically with regards
to the number of cores used. Suppose a program processes 𝑛 tasks
in parallel, each task allocating 𝑟 words per second and keeping𝑚
words live at any time. The system performs a garbage collection
after allocating 𝑡 words. A full tracing garbage collection1 thus
requires tracing 𝑛𝑚 words, and a garbage collection occurs 𝑛𝑟𝑡−1
times per second. The overall cost of tracing (which often domi-
nates) is thus proportional to 𝑛2𝑚𝑟𝑡−1. Maintaining a constant cost
of collection while increasing 𝑛 requires increasing 𝑡 by a factor of
𝑛2, i.e. allowing the collector to use space proportional to the square
of the number of tasks to run. Assuming perfect scalability of the
collector, a parallel collector can instead use 𝑛 cores for tracing and
a heap only 𝑛 times larger, to achieve the same effect.

Increasing the heap or nursery size also decreases locality of ref-
erence, which can decrease the performance of functional programs
overall [12]. However, Common Lisp programmers vary in their
use of functional or in-place algorithms, and thus the significance
of locality of reference may not be as large as with more functional
languages.

We can also use parallelism to improve the latency of garbage
collection. While our collector still stops the world in order to
perform a collection, parallel garbage collectors take less real time
to collect than non-parallel collectors, thus decreasing pause times.

A reader unfamiliar with garbage collection may want to consult
the Memory Management Reference2 for definitions of unfamiliar
terms in this paper.

2 PRIORWORK
Luís Oliveira parallelised gencgc [18], using an approach like that
used by Marlow et al for the Glasgow Haskell Compiler [16]. In
both collectors, worker threads claim pages to scan for references
to objects which need to be copied. Oliveira did not achieve a large
speedup by parallelising garbage collection, but he was only able to
test on a dual-core machine. We suspected greater speedups could
be achieved with more cores, as processors with more cores are
much more accessible than at the time of development of either
collector; the Steam hardware and software survey results3 indicate
that more than half of participants now have 6 or 8 cores.

1We believe the same relation would hold for a generational collector, but the cost
model would be more complicated.
2https://www.memorymanagement.org/
3The survey results are accessible at https://store.steampowered.com/hwsurvey; the
participants are users of the Steam game distribution service, so it is possible that the
results are biased towards more powerful computers.
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We attempted to replicate Oliveira’s collector in 2022, but the
collector did not work reliably, nor did it achieve any substantial
speedup when it did work. Collector threads contended heavily on
a lock while acquiring new pages to copy objects into; Marlow et
al had experienced similar behaviour, and reduced the frequency
of locking by having collector threads acquire more pages at once.
We instead opted to implement a non-moving collector, eliminating
altogether the need to support fast allocation by many threads.

3 MARK-REGION COLLECTION
3.1 Heap structure
The heap structure is based on the two-layer structure of Immix [8],
consisting of 32 kibibyte pages consisting of 128 byte (or 16 word)
lines. The page size may be changed, but the scavenging algorithm
constrains the line size, as described in Section 4. As with gencgc,
pages may either store small objects or part of a large object, but
objects larger than three quarters of a page may reside on a single
“large” page, to prevent the allocator from trying to search for large
holes in small pages.

The collector reclaims memory at the granularity of lines; a
line is considered either entirely live and not reusable, or entirely
dead and reusable. The collector also marks all lines that an ob-
ject occupies when tracing the object, ensuring live lines are not
reclaimed later. As objects allocated together tend to die together
[24], the garbage collector is still effective at reclaiming memory
despite this inaccuracy, and the heap produces little internal frag-
mentation. The mutator allocates objects contiguously into unused
lines, providing for locality of reference between objects allocated
contemporaneously.

The collector relies on four additional tables stored outside of
the heap: object map and mark bitmaps, and line metadata and card
table bytemaps, each 1

128 of the heap size on 64-bit platforms, lead-
ing to approximately 3.1% space overhead. As objects are aligned
to two words (or 16 bytes), it is only necessary to store a bit for
locations spaced 16 bytes apart. A byte consists of eight bits, so
the locations for 128 bytes of heap fit in one byte of bitmap. The
bytemaps are sized to have the same scale (of metadata bytes to
heap bytes) as the bitmap, to simplify traversals of the heap, as
described in Section 4.

3.2 Tracing
The collector has four stages. The collector first marks the roots,
such as local and global variables. Then the collector scavenges
objects in older generations to find references to new objects; such
references require the collector to retain those new objects. The
collector then traces the heap, marking every object which is transi-
tively reachable from a marked object. The collector finally sweeps
the heap, resetting the internal state of the collector and allowing
the memory used by dead objects to be reused. The scavenging
and sweeping passes can be parallelised by giving each collector
thread its own section of the heap to process, but it is not as trivial
to parallelise the tracing pass.

Parallel tracing is performed using the design by Ossia et al
[19]. Grey objects (which have already been marked, but need to
be traced by the collector) are stored in a set of grey packets, with
each packet storing a sequence of references to grey objects. Each

worker thread has an input packet of objects that the thread is
going to trace, and an output packet of objects that were discovered
by the thread during tracing. As collector threads read and write
packets entirely sequentially, threads may use software prefetching
to avoid waiting for objects to be loaded from main memory. We
store packets in a stack, using a lock to protect the stack; Ossia et al
used a lock-free list, but we did not observe a significant decrease
in performance by using a lock. Locking has been also used in other
well-used collectors; the Garbage-First collector for Java4 used a
lock, suggesting that locking the stack does not impact performance
in Java.

The collector allocates packets outside the heap, directly ac-
quiring memory using the mmap system call.5 In order to avoid
serialisation induced by the kernel updating the memory map, we
implemented an arena allocator, which allocates chunks of packets
sized to increasing powers in two. At the end of the collection,
the entire contents of the arena are considered unused. In order
to avoid allocations in subsequent collections, we retain chunks
which have been used recently, but we munmap chunks which have
not been used recently, so that the collector does not needlessly
retain chunks which are seldom used. To avoid having to protect a
global free list from concurrent access, packets are reused in thread-
local lists. We confirmed Ossia et al’s observation that packets use
little memory, at most using 3.7MB while running the boehm-gc
benchmark in a 4GB heap (as described in Section 6).

4 NON-MOVING GENERATIONAL
COLLECTION

Many approaches to generational garbage collection rely on rep-
resenting generations using ranges of addresses in the heap. For
example, gencgc associates a generation with each page in the heap.
We avoid moving objects where possible, so attempting to partition
the heap using addresses prevents the collector from reclaiming
much memory; if a page were promoted to an older generation, any
free space on the page could not be used for allocating new objects
(which necessarily are in the youngest generation), and could not
be reused until the page is entirely unused.

Demers et al suggested that it is not necessary to represent
generations this way, however, and that associating a generation
with each object suffices [9]. We are left with the problem of where
to store the generations associated with each object. All types
of objects that are not cons cells have a header word in SBCL,
which can store a generation number6, but there is no free space
in a cons cell to store a generation number. We may instead store
generation numbers in a table external to the heap, as we dowith the
mark bitmap. Using a table separate from the heap also reduces the
amount of memory which must be scanned, as generation numbers
are stored compactly, instead of being mixed with other data in
the heap. Scanning the table also eliminates the need to walk most
objects in the heap.

4See https://github.com/openjdk/jdk/blob/jdk-21+8/src/hotspot/share/gc/g1/
g1ConcurrentMark.cpp#L175-L211
5As the collector runs in a signal handler, it is necessary to avoid using libc functions,
and SBCL generates a “raw” system call when possible.
6Indeed this is how the immobile space in SBCL works, as it does not need to store
cons cells.

https://github.com/openjdk/jdk/blob/jdk-21+8/src/hotspot/share/gc/g1/g1ConcurrentMark.cpp#L175-L211
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Making such a table space-efficient would be difficult, however,
as a generation number would be required for every location that
an object could reside at. SBCL uses eight generations by default, re-
quiring three bits of storage per location. If a full byte were reserved
for each generation number, the generation table would require a
1
16 space overhead. Immix peculiarly used a table of bytes (which
we will call a bytemap) for storing marks for lines, rather than a
table of bits (a bitmap), in order to avoid using atomic operations
to mark lines as live. We may instead use the bytes in the bytemap
to store generations and line marks; as we only collect whole lines,
parts of a line cannot be reused, so all objects on a line must share
the same generation. To implement conservative root finding, the
line bytemap is also used to record which lines have been freshly
allocated.

Demers et al also raised the issue of card pollution. Generational
collectors often use a card map [23] in order to find old objects
which have been updated, and may now contain references to new
objects. Cards are segments of the heap, similar to pages, although
cards are usually smaller than pages. The compiler inserts write
barriers into mutator code, which cause the mutator to mark a card
as dirty when the mutator stores a reference in that card. If cards
are larger than lines, then newer and older objects may exist in
the same card. It is not possible for the collector to discern writes
to newer and older objects on the same card, so writes to newer
objects in a card may cause the collector to needlessly scavenge
older objects in the same card. We avoid this imprecision by making
cards the same size as lines, so that cards can only store objects in
the same generation.

Another benefit to making cards the same size as lines is that
various operations on all the bitmaps can be performed more ef-
ficiently using single instruction-multiple data instructions, which
many instruction sets have. It is convenient to use SIMD com-
parison instructions on the bytemaps, as true is represented as
all bits set in a byte, and false as all bits cleared7. Such results
can be treated as sets of object locations where tests on the line
and card bytemaps succeed, and bitwise-and may be used to per-
form logical conjunction of tests. For example, code computing
map ∧ (generation > 𝑔) ∧ (card = dirty) for every byte of the ob-
ject map, line bytemap and card bytemap will correctly compute a
bitmap with bits set where objects which are dirty and are older
than generation 𝑔 reside.

5 CONSERVATIVE ROOT FINDING
The SBCL compiler does not record which registers and stack loca-
tions are used for tagged and untagged values, when targeting the
x86 and x86-64 instruction sets, so a collector must be conservative
when scanning the stack and registers to find root references into
the heap; the collector must be able to identify which values iden-
tify objects in the heap, and which do not. While SBCL does not
use interior pointers, which keep an object live without pointing to
the start of the object, we implemented interior pointers to see how
complicated implementing interior pointers would be.

7For example, the SSE2 instruction pcmpeqb effectively computes
(map 'vector (lambda (a b) (if (= a b) #xFF #x00)) A B) for two vec-
tors A and B. In practise we rely on the auto-vectorisation of C compilers for
portability; GCC and Clang successfully generate vectorised code for x86-64 (with
SSE2 and AVX2), ARM (with SVE) and RISC-V (with the Vector extension).

Lines

Map

Heap

Figure 1: Most objects are not contiguous in memory, but
objects allocated after the last collection are contiguous in
fresh lines (light green).

If objects are stored sequentially in pages, the collector can scan
a page of memory sequentially to find the object which a pointer
references [5]; SBCL currently uses this approach. We cannot use
this approach, however, because objects are not stored sequentially
in pages, and so attempting to scan sequentially will likely read
garbage data.

Another approach is to record positions of objects into an object
map bitmap when allocating, as suggested by Shahriyar et al [21].
Without interior pointers, it suffices to check the bit in the object
map corresponding to a pointer, to determine if the pointer points
to an object in the heap. With interior pointers, the bitmap must
be scanned backwards to find a set bit, and then the size of the
corresponding object found may additionally be checked, in order
to confirm that the pointer does indeed point inside the object. The
scan is rather fast when employing bit parallelism and checking
entire words of bits at a time. However, setting bits in the bitmap
slows down the mutator, and it is also difficult to update the bitmap
without dedicated instructions; Shahriyar et al use the x86 bts
instruction to set a bit in a bitmap, but many other instruction sets
such as ARM and RISC-V do not have a similar instruction.

We instead use a hybrid of the two approaches, where an object
map is used, but it is not updated by the mutator directly. While
Immix does not store objects contiguously on pages, objects are al-
located contiguously in smaller runs. An example of this behaviour
is depicted in Figure 1. Our allocator marks lines it uses for allo-
cation as fresh, and when the collector encounters a conservative
reference into a fresh line, the collector finds the start and end of
the enclosing run, and computes the object map for that run of
objects. As most objects die young [22] and few objects are ref-
erenced from the stack, the collector does not have to compute
much of the object map. It is also thus not necessary to produce a
fast instruction sequence to update the object map, as the object
map is seldom written into, and the object map is not written into
by the mutator. We have observed that, at most, the parallel fuzz
tester requires the collector to compute the object map for about
600 kilobytes of heap on average.

This approach might increase pause times, as object map compu-
tation is done all at once, rather than spread out across the execution
of the application. We have not observed any effect on pause time in
practise, but a concurrent collector may opt to process conservative
roots concurrently with the mutator.

6 PERFORMANCE
We improve performance by usingmultiple cores to perform garbage
collection work, but it is also important that the performance with
a single core is not made much worse by the use of a more scalable
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parallel algorithm. Using many more cores for a small performance
gain would lead to very poor efficiency, which is usually undesir-
able. Focusing on only using more cores to achieve performance is
likely futile in any case, as the scalability of tracing is often limited
by the shape of the heap being collected [3]. Thus we report results
for a variety of thread counts: we test the baseline performance
of the collector with only one thread, realistic configurations with
2 and 4 threads, and the limit with 12 collector threads. We test
with a Ryzen 1950X processor, with 12 cores provided to the virtual
machine used. Each configuration of each benchmark was run 30
times, and we report the average of all the runs.

We test with commit 4e71abc577180c0276cb14b31a69dc0d2eb84694
of our fork of SBCL accessible at https://github.com/no-defun-
allowed/swcl, with the immobile space disabled for both collectors,
as we currently cannot use it with the parallel collector. Enabling
the immobile space makes the mutator much faster running Re-
grind; we expect a similar speedup would be achieved when the
immobile space works with the parallel collector.

We use our own benchmark suite as we could not find any other
suite which was appropriate. In particular, the cl-bench suite is
popular, but does not generate much of a load for the garbage
collector. We could decrease the size of the heap in order to cause
more frequent garbage collections, but more of the heap would
still fit in the large caches of modern processors. There are also
no latency-sensitive benchmarks in cl-bench, nor any benchmarks
which use multiple threads. The benchmark suite itself is accessible
at https://github.com/no-defun-allowed/gc-benchmarks/tree/v1.

6.1 Throughput benchmarks
Figure 2 contains the results of the throughput benchmarks. The
benchmarks are:

• boehm-gc: A benchmark from cl-bench8 which allocates
many binary trees of various sizes, with the 𝑘 parameter
(which affects the size of trees allocated) increased to 24
from the original default of 18. Binary trees of each stage
of the benchmark die simultaneously, and fragmentation is
negligible. Serial mark-region collection lags copying col-
lection somewhat, and any parallel collection out-performs
gencgc. The benchmark also runs in a smaller heap when
using the mark-region collector.
Despite the formerly discussed efforts to reduce mutator
overhead, some overhead still exists when using the mark-
region collector. We suspect that the smaller cards cause
more cache misses, slowing down the mutator.

• regrind-interpret: The parallel fuzz tester for the one-more-
re-nightmare regular expression compiler9, running using
12 worker threads. In order to make the benchmark more
reproducible, it was modified to generate the same sequence
of regular expressions to test, and to use static load balancing.
It allocates lots of very short-lived objects. gencgc is compa-
rable in performance to parallel mark-region collection with

8https://gitlab.common-lisp.net/ansi-test/cl-bench/-/blob/master/files/boehm-
gc.lisp
9https://github.com/telekons/one-more-re-nightmare/blob/master/Tests/regrind.
lisp

two threads, owing to the lower mutator time. The mark-
region does not perform well with a heap smaller than 5GB,
and all but the 12-thread configuration are outperformed
by gencgc with a heap larger than 5GB. Very few objects
survive a nursery collection, causing the scavenging and
sweeping passes of the mark-region collector to take most
of collection time.
This benchmark exhibits a more asymptotic mutator per-
formance than boehm-gc, with the mutator performance
varying with the heap size when using mark-region collec-
tion. The performance appears to vary due to the mutator
needing to acquire more pages in tight heaps (as in Figure 3).
A partly used page fits fewer new objects than an entirely
free page, so more partly filled pages must be acquired to
allocate; boehm-gc does not produce any partly used pages.
While the collector can reuse partly used pages without mov-
ing, it incurs some time overhead in doing so. (We thus have
lost some scalability to the allocator, but it is not as bad as if
we had used a parallel copying collector.)

• regrind-compile: The same fuzz tester, with the same mod-
ifications made as with regrind-interpret, but using the com-
piler of SBCL rather than the interpreter. (Using the compiler
is much slower than the interpreter, so the fuzz tester is con-
figured to perform much less work.) It allocates longer-lived
objects, requiring much more time to trace. The variation of
mutator time is greater than in regrind-interpret.

6.2 Latency benchmarks
One benchmark we test, named ring-buffer is pathological for
copying collectors [13], demonstrating a substantial difference in
work performed by non-moving and copying collector algorithms.
The benchmark involves a ring buffer of small unboxed arrays, each
array containing a one kilobyte “message”, with each new message
being a new allocation from the heap. Each live message must be
copied by a copying collector, although no pointers to trace are
discovered in doing so.

As depicted in Figure 4, themark-region collector performsmuch
better by not having to copy messages, and also allows running in
smaller heaps. When running in a 2GB heap and with gencgc, the
program spends 50% of processor cycles in the C memcpy function.
While the benchmark is derived from a real program which had
this pathological behaviour, we do not think it is a good model
of most programs. Almost all objects allocated in the benchmark
have no pointers, are somewhat large, and survive several nursery
collections.

Kandria, a commercial game written in Common Lisp [14], is
used in a more complex benchmark. The game uses a mixture of
object-oriented code and numerical code with unboxed arrays. The
game is configured identically to the retail version, using a 4GB
heap. We played the same part of the game for a few minutes
with each collector configuration10, and record the distribution of
how long it takes to produce each frame (frame times), and the
distribution of pause times in the kandria benchmark. As the game

10We would prefer to be able to replay a capture of inputs to the game, in order to have
the game run more deterministically, but we were not able to get the capture to be
replayed reliably.

https://github.com/no-defun-allowed/swcl
https://github.com/no-defun-allowed/swcl
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https://gitlab.common-lisp.net/ansi-test/cl-bench/-/blob/master/files/boehm-gc.lisp
https://gitlab.common-lisp.net/ansi-test/cl-bench/-/blob/master/files/boehm-gc.lisp
https://github.com/telekons/one-more-re-nightmare/blob/master/Tests/regrind.lisp
https://github.com/telekons/one-more-re-nightmare/blob/master/Tests/regrind.lisp
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Figure 2: Results of the throughput-oriented benchmarks.

1 2 3 4 5 6 7 8
6 · 105
8 · 105
1 · 106

1.2 · 106
1.4 · 106

Heap size (GB)

Pa
ge
sa

llo
ca
te
d

regrind-compile pages allocated

1 2 3 4 5 6 7 8

1 · 106

1.2 · 106

Heap size (GB)

Pa
ge
sa

llo
ca
te
d

regrind-interpret pages allocated

Figure 3: The number of pages acquired in order to allocate small objects.

requires low-latency graphical input and output, Kandria was run
on the author’s desktop computer, with a Ryzen 5900X processor
and RX 580 graphics card.

As depicted in Figure 5, parallel garbage collection slightly re-
duces the size of the tail of pause times. However, the parallel

collector does not improve pause times substantially. We also com-
pared frame times to some time limits (in Table 1): the 16ms time
limit tests if the game can run smoothly at 60 frames per second,
and shorter time limits approximate the same target while using a
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Figure 4: Worst pause times running ring-buffer.

Table 1: The percentages of frame timeswhich exceed various
time limits, for varying collectors and thread counts. (Mark-
region is abbreviated to MR.)

Limit gencgc MR MR MR
1 thread 1 thread 2 threads 4 threads

16ms 0.22% 0.28% 0.27% 0.26%
12ms 0.28% 0.38% 0.35% 0.34%
8ms 0.43% 0.52% 0.50% 0.51%
6ms 2.15% 2.30% 2.21% 2.23%

slower computer. The mark-region collector violates the time limits
more often than gencgc, regardless of the number of threads used.

Very few objects survive garbage collection in Kandria, with
less than a megabyte surviving out of a 200 megabyte nursery. The
scavenging and sweeping passes dominate collection time, due to
doing work proportional to the number of used pages. We observed
at one point that there were older objects occupying 160MB of
memory spread across lines occupying 310MB of memory, in turn
spread across pages occupying 660MB of memory. This fragmen-
tation causes the collector to scan much more metadata than is
strictly necessary. As a result, scavenging took 2.9 milliseconds
on average, tracing took 1.9 milliseconds, and sweeping took 1.6
milliseconds. Kandria thus appears to represent a pathological case
for non-copying collectors.

7 CONCLUSIONS AND FUTUREWORK
When using a single core, our mark-region garbage collector is
only somewhat slower than the copying collector of SBCL, despite
our collector never moving any objects. Using additional cores to
collect in parallel allows our collector to significantly outperform
the copying collector, and non-moving collection appears to be
simpler to correctly parallelise than copying collection.

The collector is not ready to be used in production yet, lacking
support for the immobile space of SBCL, and lacking any kind of
compaction. We are also considering extending the collector to
operate concurrently with the mutator, which is simpler without
needing to copy objects.

7.1 Immobile space
SBCL has an additional immobile space which resides in the lowest
232 bytes of the address space, and does not move. The immobile
space stores layouts of “instance” objects to reduce the size of

the headers of instance objects, and stores symbols to reduce the
size of code referencing symbols. The immobile space is managed
by a different marking algorithm, and by the TLSF allocator [17]
rather than a bump allocator. We haven’t succeeded in getting the
immobile space collector to work with the mark-region collector
yet, but it should be used in a garbage collector used in production.

As the parallel collector used for most of the heap (in dynamic
space) does not move, it is tempting to simplify the heap and use the
same collector for immobile space. But allocations into immobile
space are infrequent, and objects in immobile space can never be
compacted (except when saving a core file), so it is worthwhile to
proactively avoid fragmentation by using the more complex TLSF
allocator.

7.2 Compaction
Heap fragmentation, due to our collector not moving objects, leads
to more pages being used than necessary. While the SBCL process
can effectively reuse holes in pages, the space is unusable by other
processes on the same computer. The lack of compaction also affects
the size of core files; for example, the sbcl.core core file using the
copying collector is 36megabytes large, but the file is 248megabytes
large using the mark-region collector, as the mark-region collector
never compacted the heap during bootstrapping. Compaction can
also coalesce free space into full pages, reducing the number of
pages that the mutator must acquire. Compaction may help to
regain some locality of reference, if objects are compacted into fewer
pages. Compaction can also reduce the amount of metadata that
scavenging and sweeping need to scan, which may be particularly
useful for Kandria.

We have begun to implement an algorithm for incremental com-
paction [6] which only moves part of the heap at the time. We select
pages with few lines used starting from the end of the heap, and
copy their contents into holes in the start of the heap. Collector
threads record references to the selected pages while tracing, so
that those references can be fixed up after copying has been per-
formed. Unlike the mixture of marking and copying that Immix
performs in one pass, having separate passes allows marking to be
performed concurrently, while compacting is done in a (hopefully
shorter) stop-the-world pause.

The algorithm may not perform well with many generations,
however, as we cannot identify all references to older objects when
performing a collection of a younger generation, and so we cannot
move older objects correctly. It may be helpful to analyse if the
many generations used by SBCL are beneficial; many generational
garbage collectors with good performance only use a young gener-
ation and an old generation, and all objects could be moved when
collecting the old generation with just two generations.

7.3 Concurrent tracing
The collector could be made concurrent by following the Ossia et
al design. The Ossia et al collector did not support generations, but
used the card map to detect modifications of any object while the
collector is tracing. In order to support generations, another card
table storing only the locations of old-to-new references would
need to be maintained by the collector. Both card tables would need
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Figure 5: Frame times and collector pause times running Kandria.

to be consulted to find all old-to-new references for collection of
younger generations.

It is possible to make compaction concurrent, typically by using a
read barrier [2], which allows for ensuring themutator only accesses
pointers to copied objects, but using a read barrier induces more
time overhead on the mutator. Recently Zhao et al have suggested
that the latency which a user of the application experiences is better
served by improving throughput, rather than focusing on further
minimising pause times [25]. As we intend to compact infrequently,
application latency may not be greatly affected by compaction
pauses.

7.4 Other ways to collect
There are other approaches to make garbage collection more per-
formant on multi-core computers, which we believe should be
reconsidered. For brevity we will only discuss reference counting
and thread-local garbage collection in some depth.

While reference counting has been seen as inferior in perfor-
mance to tracing, it has been optimised with coalescing [15] to
greatly reduce the number of updates to reference counts, com-
bined with the Immix heap layout to provide better locality of
reference [20], and recently the LXR collector [25] has been shown
to outperform other garbage collectors for Java in both throughput
and latency. Updating reference counts in a coalescing reference
counting collector can be embarrassingly parallel, unlike tracing.
Reference counting cannot collect cycles however, so infrequent
tracing to collect cycles is necessary; but if tracing is infrequent, it
will not harm scalability too much. It has also been observed that
old objects are less often modified than young objects in Java [7];

if a similar observation holds for Common Lisp programs, using
coalesced reference counting to reclaim old objects may work well,
with fewer updates to reference counts contributing to a stop-the-
world pause.

Another approach to improving the scalability of tracing is to use
thread-local garbage collection, for which designs for immutable ob-
jects in ML [10] and mutable objects in Java [11] exist. Each thread
has its own private nursery, which may be collected independently
and without synchronisation, allowing for high scalability. Thread-
local collections also may improve latency, as global collections
which require all threads to be stopped are less frequent. Locality
of reference may also be improved, as thread-local nurseries can be
small; and cache ping-pong effects are minimised, as threads never
need to access cache lines for the nurseries of other threads.

The latter design, which does not require objects to be moved,
could benefit from a mark-region heap as described in this paper; in
particular, the mutator can still utilise bump allocation, even though
global objects cannot be moved out of partly used pages without
performing a global collection. A similar kind of sweeping can be
used for sweeping during a local collection, by copying the mark
bitmap to the object bitmap only for local objects, thus preserving
global objects which are not collected.
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