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Abstract

The garbage collectors in high-performance runtimes can be varied and flexible in
order to achieve high performance for both the mutator and the collector. Different
collectors and runtimes can have different methods for allocation, and requirements
on initialisation and when the mutator must run write barriers. Such variation and
flexibility however leads to complex interfaces and invariants which the mutator must
uphold, and thus can misuse – indeed some bugs in commonly-used language run-
times can be attributed to the compiler generating code which misuses the interface
with the garbage collector. Miscompilation can result in a vector for security exploits
when compiling untrusted code, as is done in web browsers. A typed assembly
language can protect against miscompilation from exposing such an exploit vector
by validating that instructions are applied to the correct types, and thus ensuring
memory and type safety. But previous work has paid little attention to the garbage
collection interface.

My thesis statement is that typed assembly language should be adapted to and used
in modern runtimes, in order to prevent memory safety bugs caused by miscompilation from
becoming security vulnerabilities.

To this aim, this thesis introduces the Pulstar typed assembly language for AArch64,
which is able to validate that the mutator upholds the invariants of the garbage col-
lector, and thus ensuring that the mutator will correctly use the garbage collection
interface.

Pulstar can validate the assembly emitted by an optimising compiler, when the
compiler performs allocation folding, the compiler optimises the initialisation of
objects and the compiler eliminates write barriers. The type checker introduces
an geometric mean of 13% time overhead on compilation, and the time spent type
checking is quadratic with the program size in practice.

Such a typed assembly language could be used in production, protecting users
from compiler bugs which introduce memory unsafety, without drastically slowing
down user applications. A typed assembly language could also be used by runtime
implementors to provide feedback which is more precise than alternative approaches,
when they are debugging how their compilers interact with the garbage collector. A
typed assembly language furthermore could be useful for validating the safety of
code sent over a network or cached on disk.
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Chapter 1

Introduction

1.1 Project Statement

With SPECjbb2015 the assertion fails after a few seconds, which
gives a hint that this scary stuff is probably happening for real,
and has been broken since forever.

[Österlund, 2020]

Programming languages and their implementations are used to provide software-
based isolation not (entirely) provided by the operating system. For example, a
web browser might rely on the memory safety of JavaScript to safely run untrusted
code downloaded from the Web. The memory safety combined with the capability
model in the web browser, where the user must allow a web application to access
files and devices, allows for guaranteeing isolation and access control even if the
operating system cannot provide such fine-grained control. Unfortunately, bugs in an
implementation may expose security vulnerabilities, and attackers can then exploit
these vulnerabilities by having the implementation run their code.

A garbage collector is often used to ensure memory safety, as the application
cannot use an object after freeing the object if the application cannot directly free an
object. There are formally verified garbage collectors which are proven to be correct
and will not prematurely free an object [McCreight et al., 2007; Sandberg Ericsson
et al., 2017; Gammie et al., 2015], but the correct behaviour of many garbage collectors
depends on the mutator cooperating with the collector. Concurrent and generational
collectors often require the mutator to execute write barriers when updating references
in the heap.1 Many collectors also require the mutator to initialise objects to some
extent before garbage collection can occur, if the allocator does not produce memory
which is safe to trace. Precise collectors often require the compiler to identify which
registers and stack slots contain references in a stack map which the compiler must
emit as part of compilation.

1The CakeML generational collector [Sandberg Ericsson et al., 2017] however does not use a write
barrier. All old-to-new references in ML are formed through mutable ref cells, and all old cells are
scavenged at the start of a nursery collection. Michael Norrish told me that such cells are expected to
be rare (though he doesn’t know of any relevant measurements).
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2 Introduction

Some bugs in production runtimes can be attributed to the mutator not correctly
following the aforementioned interface. The new Maglev compiler in V8 incorrectly
implemented allocation folding, leaving the possibility of a new allocation being
uninitialised during a garbage collection and then producing a dangling pointer
afterwards [Jimenez and Rao, 2024]. The older Turbofan compiler in V8 incorrectly
eliminated write barriers by falsely inferring that some values are small integers
[Tiszka, 2021; Google, 2017]. Sometimes the fixes to such bugs are too cautious and
can restrict optimisations: for example, the C2 compiler in HotSpot scheduled write
barriers to be separated across safepoints from their respective writes [Lozano and
Österlund, 2023], and the fix prevented some code motion, although the authors
argue little optimisation was possible to begin with.

A typed assembly language may be used to validate some properties of the output
of a compiler, by assigning types to all the values used in an assembly program,
and rejecting programs which attempt to execute instructions with values of the
wrong types. A typed assembly language provides type safety by design, and a
typed assembly language can further provide memory safety by restricting how the
application can manipulate references. For example, the program cannot possibly
perform a use-after-free if programs can only allocate objects from a garbage-collected
heap, and cannot explicitly deallocate objects somehow. Using a typed assembly
language to ensure safety can substantially reduce the trusted computing base of a
runtime which was relying on the compiler to produce safe code (under the very
likely assumption that the typed assembly language is simpler than the compiler).

Existing typed assembly languages however do not consider the garbage collec-
tion interface, or make concessions which prevent the languages from being usable
by high-performance runtimes. For example, they do not ensure that the garbage
collector can only observe all fields being initialised, preventing the use of precise
garbage collection without expensive bulk-zeroing of memory. They do not track the
correct use of write barriers, preventing the use of inlined code for write barriers and
preventing the compiler from eliminating redundant write barriers.

1.2 Contribution

In this thesis I will be considering two uses of a typed assembly language extended
to validate the garbage collection interface. Typed assembly can ensure that compiled
code is always memory- and type-safe, preventing compiler bugs which produce
memory-unsafe code from becoming exploits in production. Typed assembly can be
used to declare the invariants that a garbage collector needs in a precise and machine-
checkable manner, which further can provide precise feedback to compiler authors
on when compiled code might violate these invariants.

To these aims I have designed and implemented a typed assembly language
Pulstar for the AArch64 instruction set, which can validate that the mutator correctly
uses the garbage collection interface. In particular:

1. Pulstar tracks which fields of objects are initialised, to ensure that all reachable
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objects are fully initialised when the garbage collector may run.

2. Pulstar tracks when objects are known to be adjacent to each other, to ensure
that the mutator can only extract objects from allocation folding (under the
assumption that they are adjacent) before the garbage collector may move and
separate the objects.

3. Pulstar tracks which objects may have been updated to reference young objects,
to ensure that the mutator always performs write barriers to inform the garbage
collector of these updates.

Pulstar only requires type annotations for the arguments, return values and con-
stant values of each function, and is able to infer the types of all intermediate values,
so that a compiler may adopt a typed assembly language without needing to preserve
its knowledge of types to the assembly level. Pulstar also supports down-casting, as
needed by object-oriented and dynamically-typed programming languages. Pulstar
furthermore tracks aliasing between registers and stack slots, so that the aforemen-
tioned information is not lost when register allocation causes values to move between
registers and the stack.

I implemented an optimising compiler for a simple dynamic object-oriented lan-
guage in order to test the performance of type checking in a realistic scenario. The
compiler exercises the typed assembly language by performing allocation folding
and write barrier elimination, and by explicitly initialising objects and eliminating
redundant writes. The compiler also performs some of the optimisations present in
production runtimes, such as inlining, specialisation, loop-invariant code motion and
type-based alias analysis.

1.3 Thesis Outline

Chapter 2 introduces the details of the garbage collection interface, the concept of
a typed assembly language, as well as other debugging tools and defenses against
buggy compilers. Chapter 3 describes my typed assembly language, and how it
validates correct use of the garbage collection interface. Chapter 4 describes the
compiler used to generate assembly code to validate and how I have implemented
the type checker. Chapter 5 presents the corpus used to test the typed assembly
language and the performance of the type checker. Chapter 6 concludes the thesis
and discusses future work which could improve the reusability of typed assembly
languages.
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Chapter 2

Background and Related Work

In this chapter I introduce the garbage collection interface, alongside existing typed
assembly languages and how they interact with the garbage collection interface.
Then I introduce other approaches to handling an untrustworthy compiler, and to
validating correct usage of the garbage collection interface.

2.1 The Garbage Collector Interface

A tracing garbage collector functions by identifying all reachable objects and then
reclaiming all unreachable objects. An object is reachable when a traversal (trace)
from the roots reaches that object; the roots consist of all local and global variables
used by the user program (which is called the mutator).

The mutator must thus supply the garbage collector with the roots; in particu-
lar, the collector must know which registers and stack slots (herein locations) hold
references to objects. The precise approach is that the compiler generates stack maps
which map values of the program counter to sets of which locations have references.
The conservative approach entails that the collector assumes all locations might have
references, and must identify whether each value in each location contains a valid
reference. The collector identifies whether a reference is valid either by traversing the
internal structure of the heap [Boehm and Weiser, 1988; Bartlett, 1988], or by reading
from a bitmap of which addresses have the starts of objects which the mutator and
collector must maintain [Shahriyar et al., 2014; Patton, 2023]. This thesis will focus on
the invariants required by precise garbage collection; although conservative garbage
collection has the invariant that the mutator cannot obfuscate references, such as by
encoding two references in one field in a xor-linked list.

2.1.1 Eliminating Zero-Initialisation

The mutator must also ensure that, for each object which is reachable, each field of
the object either has a non-reference type (either by a static type or by using tagged
values), has a valid reference to an object, or has some other value which the collector
knows not to trace (such as a null pointer). One simple approach to ensuring that
this invariant is held is to arrange that the allocator always provides memory which

5



6 Background and Related Work

is filled with zeroes, when a null pointer or some immediate value is encoded as
a zero. This approach is convenient for languages such as Java, which have null
pointers and zero-initialise all fields of an object before the constructor for that object
runs. This approach is not convenient for languages such as Common Lisp [X3J13,
1994, §7.13] and Smalltalk [Goldberg and Robson, 1983] which pre-initialise fields to
a value other than zero, nor is it convenient for languages such as ML which never
allow uninitialised fields to be observed by the programmer.

Zero initialisation however takes time and memory bandwidth [Yang et al., 2011],
regardless of whether filling memory with zeroes or some other value corresponds
to any part of initialisation in the programming language. Yang et al. describe zero
initialisation as being either performed in bulk before the allocator gives memory to
the mutator, or performed on the hot path when the mutator has just allocated an ob-
ject. Hot-path zero initialisation is amenable to the dead store elimination optimisation,
where all but the last of subsequent stores to a field can be removed, so long as the
field can never be read in between stores. The compiler must however count running
the garbage collector as reading all fields of objects when eliminating initialising
stores in particular, as otherwise the optimisation would cause the collector to read
uninitialised fields.

2.1.2 Write Barrier Elimination

The collector having to trace all live objects in every garbage collection yields poor
performance, both in terms of latency and throughput. A stop-the-world collector must
pause the mutator from running while the collector traces the heap. But a concurrent
garbage collector [Dijkstra et al., 1978] allows the mutator to continue running while
the collector traces the heap, with the requirement that the mutator notify the collector
which references the mutator has updated in the heap.

The collector has to trace each object in each collection that the object survives
(regardless of whether the collector is concurrent or not) which wastes time re-tracing
objects which survive multiple collections. Fortunately, many programs exhibit a
bimodal distribution of the lifetimes of objects (the weak generational hypothesis), so
a generational garbage collector [Lieberman and Hewitt, 1983] can focus its efforts
on collecting just the younger objects which are more likely to die than the older
objects. A generational garbage collector partitions the heap into a young generation
and an old generation, and allocates objects into the young generation. The collector
then can trace the young generation without tracing the old generation. The collector
infrequently promotes surviving objects into the old generation, and infrequently
collects objects in both generations when the old generation grows too much in size.
In order for the garbage collector to correctly trace the young generation without
tracing the old generation, the collector must be able to enumerate all references from
objects in the old generation to objects in the young generation, for which the mutator
must again notify the collector of which references the mutator has updated in the
old generation.

A compiler may be able to tell that a write barrier is not necessary for either a
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concurrent or generational collector. In the case of a generational collector, there is
no need to emit a write barrier for a write to an object which is always in the new
generation. Most concurrent collectors do not need to be notified that an object was
modified twice. For example, the Android runtime uses write barrier elimination for
a card-marking write barrier. The compiler only emits one write barrier for multiple
writes to the same referencee when the writes are not separated by control flow (i.e.
they are in the same basic block).

Many runtimes using tagged pointers, and runtimes implementing languages imple-
menting nullable references can eliminate the write barrier when storing an immediate
value and null respectively. Such writes cannot produce old-to-new references as an
immediate value is not in the heap and has no generation.

Two cases of incorrect write barrier elimination in Turbofan [Tiszka, 2021; Google,
2017] were caused by an optimisation accidentally widening the type of a value from
being a small integer, which is not allocated in the heap, to “any number” which
might be allocated in the heap. An optimisation should never cause types to widen,
as doing so would invalidate the assumptions made by previous optimisations; in
this case, a prior optimisation eliminated the write barrier under the assumption
that a value was a small integer. Such interactions between optimisations can cause
compiler bugs, which are not directly related to the garbage collection interface, to
cause the mutator to violate its invariants nonetheless. A typed assembly language
tracks types of values in a program, and thus would be suited for validating such a
rule for write barrier elimination.

2.1.3 Allocation Folding

Allocation folding [Clifford et al., 2014] coalesces separate allocations for separate ob-
jects into one allocation, to speed up allocation. Allocation folding is used by V8,
GraalVM1 and Erlang [Ericsson AB, 2024]. V8 additionally uses allocation folding to
help its compilers identify objects which are known to be young, in order to eliminate
write barriers. Each allocation may trigger a garbage collection, and the garbage
collector may choose to promote any young objects to the old generation, so a com-
piler cannot determine what the generation of an object will be after another object is
allocated. Thus the compiler folding multiple allocations into fewer allocations allows
the compiler to determine that more objects will be young, and thus the compiler can
eliminate more write barriers.

2.2 Typed Assembly Language

Morrisett et al. [1999] introduced the concept of a typed assembly language and a
compiler from polymorphically-typed lambda calculus (System F) to a typed assembly
language. They propose using typed assembly language to guarantee safety without

1Allocation folding is demonstrated in GraalVM in https://ionutbalosin.com/2024/02/
jvm-performance-comparison-for-jdk-21/#analysis-of-wrapper_obj_baseline; I haven’t found it mentioned in
the GraalVM documentation though.

https://ionutbalosin.com/2024/02/jvm-performance-comparison-for-jdk-21/#analysis-of-wrapper_obj_baseline
https://ionutbalosin.com/2024/02/jvm-performance-comparison-for-jdk-21/#analysis-of-wrapper_obj_baseline
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relying on a compiler (or a programmer directly writing assembly) to preserve safety.
Their type system tracks initialisation as they treat allocation and initialisation as
separate instructions, and using an uninitialised object where an initialised object is
expected would violate type safety. But they do not use type information to verify
the garbage collector interface: they use the conservative Boehm-Demers-Weiser
collector, which ignores uninitialised fields in objects out of necessity; the collector
cannot identify which fields are not pointers anyway. The collector also uses hardware
memory protection, as the collector cannot instruct the compiler to emit write barriers.
However, they note that their typed assembly language prevents the mutator from
obfuscating references in ways which would cause a conservative collector to not
recognise a reference to an object as a reference, and thus the mutator could not
produce a dangling pointer after deobfuscating the pointer.

Their type system also relies on the program not having any loops in the con-
trol flow in a function; they are able to compile interesting programs despite this
requirement by compiling to continuation-passing style code wherein control flow is
only performed by tail-calling between functions, and the call stack is replaced with
a caller calling its callee with a continuation function for the callee to call with its
“return” value [Steele, 1976]. Compiling to continuation-passing style side-steps the
requirement, as the typed assembly language can verify arbitrary calls between be-
tween functions, but few compilers generate code in continuation-passing style. Later
work by the authors allowed for arbitrary control flow in a function and the use of
a traditional call stack in a stack-based typed assembly language [Morrisett et al., 2002],
but they require basic blocks to be annotated with the types at the start of each basic
block.2 This requirement would require compilers to preserve type information up to
and through emitting assembly, which may require substantial modifications to the
compiler.

Chang et al. [2005] introduces the Coolaid verifier, which uses typed assembly
language as a debugging aid for students in a compiler construction course. They
introduce some concepts necessary for verifying the output of a compiler which
compiles a Java-like language, such as nullable types and existential types for method
dispatch; but they do not address the garbage collection interface. They use abstract
interpretation to eliminate the annotations for each basic block, and track values in
registers and stack slots to propagate types between locations which are known to
refer to the same objects. Students who took the course when Coolaid was introduced
wrote compilers which were more likely to pass the unit tests used to assess student
work, and most students found the verifier useful. Chang et al. note that Coolaid “not
only can expose compilation bugs that simple execution with [an emulator] might not
cover, but can also pinpoint the offending instruction, as opposed to simply producing
the wrong [...] output.” This precision is unique to typed assembly language and
translation validation (to be introduced in Subsection 2.3.2), and the typed assembly
language can also statically detect type errors even when they are not encountered at

2This requirement is equivalent to the requirements of the original typed assembly language, that
function types must be annotated and that functions are compiled in continuation-passing style, as
jumping to a basic block is equivalent to calling a continuation function [Steele, 1976].
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run time.
Tate et al. [2010] use a typed assembly language iTalX in the Bartok compiler for C#

(as used in the Singularity operating system), which introduces additional constructs
for type-checking the soundness of array bounds check elimination and the correct
usage of stack allocation. They however outline allocation and write barrier code, as
their type system cannot verify either, leading to 2.3% mutator overhead [Chen et al.,
2008]; which is however less overhead than the 4.8% overhead found by Blackburn
and McKinley [2002] for using outlined barriers instead of partially inlined barriers.

2.3 Handling an Untrusted Compiler

We may have to deal with a compiler which we do not trust to be correct, for which
some production runtimes have implemented mitigations against miscompilation.
Two approaches have been deployed for this problem: running untrusted code in a
sandbox limits the damage that the code can inflict, and translation validation can
establish trust that the compiler correctly compiled a specific program.

2.3.1 Sandboxing

V8 uses a sandbox to contain all JavaScript objects, to contain the effects of buggy com-
piler output and of the C++ runtime. A memory safe language with encapsulation
theoretically should suffice to implement access control [Rees, 1996], so additional
sandboxing should not be necessary. But experience with bugs in V8, which inval-
idate the memory safety guarantees of the language, have lead the developers to
conclude that “memory safety cannot be guaranteed by the compiler if a compiler
is directly part of the attack surface” [Groß, 2024] as is the case when miscompiling
untrusted code to a memory-unsafe language (machine code).

Sandboxing is essentially the same isolation that a kernel provides between pro-
cesses, but implemented in a user-space program; such sandboxing could be rather
expensive if it was implemented like process isolation. Aiken et al. [2006] observe
a 25–33% time overhead when using the conventional approach using the memory
management unit to implement process isolation, but observe less than 5% overhead
when using software-based isolation. The sandboxing technique in V8 however only
requires a shift and an add instruction before loading a reference to an object inter-
nal to the heap, and an additional indirection for references external to the heap,
producing “around 1% or less” time overhead.

Validating the output of the JIT compiler however could not help with the memory-
unsafe runtime code written in C++, whereas the sandboxing contains the possible
effects of buggy C++ and JavaScript code to the JavaScript heap. Validation also
would not mitigate against side-channel attacks, which effectively bypass type and
bounds checks; V8 instead implements some additional bespoke mitigations [McIlroy
et al., 2019].
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2.3.2 Translation Validation

Another approach to handling untrusted passes of a compiler which only introduces
compile-time overhead is to employ translation validation [Pnueli et al., 1998] and
prove that all possible semantics of the output of the pass are equivalent to possible
semantics3 of the input of the pass.

Rideau and Leroy [2010] present a translation validator for the register allocator of
the formally verified CompCert compiler, for which most passes are formally verified
using the Coq theorem prover. Instead Rideau and Leroy wrote the register allocator
as unverified OCaml code, wrote a formally verified translation validator, and require
that the output of the register allocator passes the validator in order for compilation
to succeed. The validator and its correctness proof are an order of magnitude smaller
than a correctness proof of the register allocator itself. They note that “the compile-
time overhead of the validator is very reasonable: validation adds 20% to the time
taken by register allocation and 6% to the whole compilation time.” The validator
is also decoupled from the register allocator, in that the register allocator can be
modified freely without having to modify the correctness proof of the validator.

The validator performs a data-flow analysis to establish an equivalence between
input code in an intermediate language close to assembly language, but with infinitely
many virtual registers (register transfer language), and output code in another language
which uses the registers of the target instruction set and stack slots (location transfer
language). The analysis however requires the register allocator to leave in no-operation
instructions in place of move instructions if the register allocator coalesces two virtual
registers into one physical register. This requirement guarantees that the position of
each instruction is the same between input and output, and so the analysis only has
to compare instructions in lockstep to find the equivalence. The Cranelift compiler
backend has a similar validator for register allocation; Fallin [2021] states that this
validator is simpler than the validator of Rideau and Leroy, by having the register
allocator explicitly mark which instructions move virtual registers between physical
registers and the stack (spills and reloads).

A translation validator can be more thorough and validate more of the compiler.
At the limit, validating the whole compiler from source code to assembly would
provide a proof that the generated assembly is memory-safe. Alive2 [Lopes et al.,
2021] and TurboTV [Kwon et al., 2024] validate transformations on the intermediate
representations of LLVM and Turbofan (in V8) respectively. Both validators function
by translating the intermediate representations into functions for a satisfiability modulo
theories (SMT) solver, and have the solver validate that all behaviours of the output
program correspond to behaviours of the input program.

TurboTV however cannot validate functions with loops. Alive2 can validate func-
tions with loops, but is intentionally unsound by only considering the execution of
a bounded number of loop iterations (by unrolling the body of the loop up to that

3This requirement is not the same as (and is instead more relaxed than) for the input and output of a
pass to have equivalent behaviour: the output of a pass may have less undefined behaviour or less non-
determinism than the input to that pass. For example, coalescing atomic operations in a multi-threaded
program will eliminate some of the non-determinism [Bastien, 2015].
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many times); an attacker could fool Alive2 with a program which only executes mis-
compiled code after more loop iterations than the bound. This unsoundness however
limits the resource usage of Alive2, as the size of the SMT problem to solve scales with
the limit on unrolling. TurboTV also required on average 0.71 seconds to validate a
randomly-generated JavaScript function, which is too slow to deploy in production.
The compilation speed is crucial for just-in-time compilation, although such over-
head would also be excessive for an ahead-of-time compiler given the constraints on
control-flow.

Translation validation is nonetheless very successful as a compiler development
tool. Contributors to the InstCombine pass of LLVM must provide proofs using Alive2
that their transforms are correct4 and 1,275 pull requests on GitHub5 mention Alive2
at the time of writing. TurboTV allows a fuzzer to find more bugs in a fuzzing setup
despite the time overhead of TurboTV, as TurboTV considers all possible arguments
of the function rather than selecting one set of arguments.

2.4 Verifying the Garbage Collection Interface

2.4.1 IR Verification

The compiler of the Android runtime has an IR checker which, among other proper-
ties, asserts that all write barriers which were eliminated are preceded in the same
basic block by some write barrier which was not eliminated. (The compiler does not
represent write barriers as separate instructions in its intermediate representation.
Instead each write instruction is annotated to indicate whether a barrier should be
emitted.)

Erik Österlund implemented a similar check while debugging the implementation
of weak references in OpenJDK [Österlund, 2020]. He associates loads of the values
of weak references and their write barriers, and then checks that no safepoints appear
in the dominator basic blocks between the write barrier and load.

Österlund’s dominator check would allow for some degree of code motion, and
dominators may be used to verify that write barriers were correctly eliminated too.
But we may face code where a write barrier is not dominated by another barrier, but
still always is preceded by some barrier, as in Figure 2.1. A compiler perhaps should
hoist and merge the write barriers out of the conditional blocks to reduce code size,
which would make dominance sufficient to check correctness, but this optimisation
should not be necessary to check correctness.

4https://llvm.org/docs/InstCombineContributorGuide.html#proofs
5This count includes pull requests which don’t mention InstCombine; Alive2 is also used e.g. in pull

requests involving the SLP vectoriser and ValueTracking: https://github.com/llvm/llvm-project/issues?q=
alive2

https://llvm.org/docs/InstCombineContributorGuide.html#proofs
https://github.com/llvm/llvm-project/issues?q=alive2
https://github.com/llvm/llvm-project/issues?q=alive2
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1 if (p) {
2 o.f1 = /* barrier */ v;
3 } else {
4 o.f2 = /* barrier */ v;
5 }
6 o.f3 = /* no barrier */ v;

Figure 2.1: The write to o.f3 is always preceded by some write to o, despite not being
dominated by either of the prior writes.

2.4.2 Heap Verification

Steel Bank Common Lisp has a heap verifier6 which checks that invariants hold on the
heap, such as that old-to-new references always reside on dirty cards. The verifier can
be configured to run before garbage collections to validate the mutator behaviour, or
after garbage collections to validate the collector behaviour. But the verifier introduces
a huge slowdown on garbage collections, slowing programs by up to an order of
magnitude, making it unsuitable for use in production. The verifier is inherently
imprecise as a debugging tool, as it only runs just before and after a garbage collection,
and the mutator may break an invariant long before collection. The verifier can also
only react after the mutator breaks an invariant, which may seldom occur for code
which is infrequently executed, or when a bug involves some very specific interleaving
of events in concurrent code.

2.4.3 Heap and Pointer Poisoning

One issue not addressed by IR verification or heap verification is whether the checks
are insufficient and still allow for memory safety bugs to occur. Heap poisoning and
pointer poisoning both attempt to force the mutator to crash when the mutator attempts
to use an invalid reference. The crash would likely occur sooner than heap verification
would detect an inconsistency in the heap, but poisoning also can still only react some
time after the mutator breaks an invariant.

Heap poisoning fills unused memory with a value which corresponds to an in-
valid reference, so that loading and using a reference loaded from unused memory
will cause a segmentation fault. The OpenJDK debug setting ZapUnusedHeapArea
configures the garbage collector to fill unused memory with the word 0xBAADBABE7.
Filling unused memory is sufficiently slow however that it was disabled by default
in debug builds of OpenJDK [Saha, 2009]. Pointer poisoning requires the mutator
to deobfuscate a pointer before use. The Android runtime negates the values of
compressed references8 so that a compressed reference cannot be used without de-
compressing the reference beforehand and so that the mutator must perform the use
barrier before using a reference.

6https://github.com/sbcl/sbcl/blob/sbcl-2.4.3/src/runtime/gencgc.c#L4824
7https://github.com/openjdk/jdk/blob/jdk-23%2B17/src/hotspot/share/gc/shared/spaceDecorator.cpp#L85
8ART uses the name heap poisoning for their pointer poisoning. https://android.googlesource.com/

platform/art/+/fb90365d945e73ac5bed6249c2dbcf6e98031efd/runtime/mirror/object_reference.h#101

https://github.com/sbcl/sbcl/blob/sbcl-2.4.3/src/runtime/gencgc.c#L4824
https://github.com/openjdk/jdk/blob/jdk-23%2B17/src/hotspot/share/gc/shared/spaceDecorator.cpp#L85
https://android.googlesource.com/platform/art/+/fb90365d945e73ac5bed6249c2dbcf6e98031efd/runtime/mirror/object_reference.h#101
https://android.googlesource.com/platform/art/+/fb90365d945e73ac5bed6249c2dbcf6e98031efd/runtime/mirror/object_reference.h#101
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2.5 Summary

An implementation of a memory-safe language using a garbage collector requires
compiled code to correctly follow the interface to the garbage collector. This interface
broadly consists of how to allocate and initialise memory, and what the mutator needs
to communicate to the collector; a mutator which does not uphold the invariants of
this interface can introduce memory unsafety.

Typed assembly languages and sandboxing remove a compiler from the trusted
computing base, and make a runtime resistant to memory safety bugs in its compiler.
Typed assembly languages can also be used as a debugging tool, to detect precisely
where the compiler generates ill-typed code. But existing typed assembly languages
currently do not validate much of the garbage collection interface; those that do are
limited to using conservative garbage collection, or pessimise code by require the
mutator to call trusted functions in order to allocate objects and to update fields with
references.

Heap verification and heap and pointer poisoning can detect misuse of the garbage
collector interface at run-time, but these introduce significant time overheads, pre-
cluding their use in production and slowing down the process of debugging. Heap
verification is also inherently imprecise, making it difficult to debug precisely how
and when the mutator broke its invariants. In contrast, the typed assembly language
I will present runs at compile-time and can identify exactly which instructions will
cause the mutator to break its invariants.
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Chapter 3

Design of a Typed Assembly
Language

This chapter presents a typed assembly language for AArch64, with extensions to
validate use of the garbage collection interface. Section 3.1 introduces the subset of
AArch64 used, Sections 3.2 through 3.4 introduce the structure of the type system
and type checker, and Section 3.5 onward contain the individual type rules.

3.1 AArch64

The typed assembly language covers the subset of the AArch64 instruction set pre-
sented in Figure 3.1. The state of an AArch64 machine is contained in thirty-two
64-bit general-purpose registers named x0 through x31, a program counter PC, a
flags register which stores the results of a comparison, and random access memory.
The highest four general-purpose registers have special purposes and names: x28
references the thread-local state (tls), x30 is the link register (lr) which provides a
callee with the address to return after a function call, x29 stores the frame pointer
(fp) and x31 stores the stack pointer (sp) which together bound the current stack
frame. The only requirement on the contents of registers is that the stack pointer
must always be aligned to 16 bytes.

3.2 Abstract Interpretation

A type system for assembly language differs from type systems for high-level lan-
guages in ways which require an unconventional approach to type-checking. A
register or stack slot may be allocated to different variables of different types, so the
type system must be able to assign different types to the same location at different
times (known as flow-sensitivity [Hunt and Sands, 2006]). The assembly is structured
as an unstructured control-flow graph rather than a syntax tree, so the usual approach
of recursively traversing a syntax tree is at least inconvenient, and at most will not

15
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Instructions Arguments Behaviour

(register) mov d, s Regd ← Regs

(immediate) mov d, #constant Regd ← constant
add, sub, mul, div, and, orr, eor, asr, lsl d, s, t Regd ← op(Regs,Regt)

b label PC← label
bl label Reg30 ← PC + 4; PC← label
ret PC← Reg30

cmp s, t set flags by comparing Regs and Regt

blt, ble, beq, bne, bge, bgt label if flags match condition, PC← label
tbz s, #i, label if ith bit of Regs is zero, PC← label
tbnz s, #i, label if ith bit of Regs is one, PC← label

With a = Regs + o:
ldr d, [s, #o] Regd ← Memorya

str v, [s, #o] Memorya ← Regv

ldp d, e, [s, #o] Regd ← Memorya;
Rege ← Memorya+8

(but undefined when d = e)
stp v, u, [s, #o] Memorya ← Regv;

Memorya+8 ← Regu

Instruction Operation Instruction Operation

add addition sub subtraction

mul multiplication div division

and bitwise and orr bitwise or

eor bitwise exclusive or

asr bitwise shift right lsl bitwise shift left

blt branch if lesser than bgt branch if greater than

ble branch if lesser or equal bge branch if greater or equal

beq branch if equal bne branch if not equal

Figure 3.1: The subset of AArch64 instructions typed by Pulstar.
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rule ::= state instruction <statesuccessor>∗

| condition; . . . ; condition
state instruction <statesuccessor>∗

state ::= {condition; . . . ; condition}
successor ::= +1 | label

Figure 3.2: The syntax of typing rules.

work.1 Instead I have adapted the use of Hoare logic for ARM assembly by Myreen
et al. [2007] in order to specify what each rule requires of the state before an instruc-
tion, and what updates to that state are made in order to produce the (possibly zero
or multiple) states for the successor instructions of the current instruction. Each state
used by the type checker contains an abstraction of the ARM machine state, assigning
known types to locations instead of concrete values.

A typing rule is expressed as a relation between an abstract state preceding the
execution of the instruction, and the updates to that state required to produce any
number of abstract states succeeding the execution of the instruction. Each successor
state pertains to a location in control-flow that execution can proceed to, which is
either a label or the next instruction (denoted by +1).

I have also adopted the use of abstract interpretation [Cousot and Cousot, 1977],
following its use in Coolaid, to handle arbitrary control flow. Abstract interpretation
infers sound types by iterating through the basic blocks, with the predecessor state
of a basic block being set to the union of successor states of each of the predecessors
of the basic block. Abstract interpretation starts propagating types from the first
basic block, with an empty stack frame and the registers assigned the types of the
parameters of the function. The iteration continues until no states change. Iterating
in this manner is crucial to correctly inferring types for loops, where there is no
(topological) order in which all predecessor states can be computed before computing
the state for a basic block inside a loop, as some predecessors will depend on the
successor state of that basic block.

The states used in this type system consist of mappings of registers and stack
slots to the values they contain, mappings of values to their types, and a log. The log
consists of a set of the values which need to be logged by the write barrier, and a set
of the values which already have been logged by the write barrier.

3.3 Type System

The types used in the type system, presented in Figure 3.3 is similar to that of
Morrisett et al. [1999] but with some modifications. There are top and bottom types

1Morrisett et al. [1999] however do use a recursive approach on a sequence of instructions, by
specifying rules for each instruction which apply when the rest of the sequence is well-typed with
a modified state. I personally find this notation hard to read, and this also approach would have to
interact with abstract interpretation, which was not used in any of the type systems by Morrisett et al.
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used by abstract interpretation: the top type denotes that the type of a location is
unknown, and the bottom type denotes that a location cannot possibly have a value.

There are no function types or polymorphic types, as my implementation of
method calls turns polymorphic method calls into calls to constant functions which
dispatch on the types given to them (for which a similar process for higher-order
functions is defunctionalisation [Reynolds, 1972]). The compiler may downcast only
between object types which have their types tagged at run time; only Fixnum and
fully initialised record types are object types. The least significant bit (tag bit) of a
reference distinguishes between small integers (fixnums, tagged with a zero bit) and
heap-allocated objects (records, tagged with a one bit). A record has type information
in a header word to allow for testing whether a value is of a particular record type at
run time. A record type tracks whether each field is initialised, but this information
is not made available dynamically; partly initialised records are not first-class objects
and not subtypes of Object, and downcasts cannot be performed to partly initialised
record types.

The type system also tracks union types as the compiler may rely on its union
types being exhaustive: for example, it may dispatch on the type True ∪ False by
testing for the type True and assuming the type must be False if that test fails (by
taking the difference (True ∪ False) − True. The type system tracks initialisation of
each field.

3.3.1 Definitions

Almost all rules require knowing that some location or value l is of a type T, which
is written as l : T. l may have a subtype of T when l : T, and need not have the exact
type T; the exact type of l in a state is instead Type(l). Updating a state to assign a
type to a location entails assigning a new value of that type to that location. Some
rules require knowing that some location l will refer to the values v, which is written
as l ⇝ v.

Some rules require knowing that some address will be aligned, either to a single
word if accessing a record, or to two words if adjusting the stack pointer. For clarity
we define the predicates:

Aligned(x) = x mod 8 = 0

Double-Aligned(x) = x mod 16 = 0

Rules which produce values require that the destination register is “ordinary” and
can be written by the normal means. The predicate Writable is true of all registers,
except for the stack pointer (SP), thread-local state register (TLS) and two registers
reserved by the AArch64 calling convention (x16 and x17). Rules which check the
size of the current stack frame use the array Stack-Frame of a state.

Rules which involve instructions which might lead to running the garbage collec-
tor require that all reachable objects are initialised. The predicate All-Values-Initialised
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types τ ::= ⊤ (top) | ⊥ (bottom) | Untagged | o
| LR | SP | Caller-FP | Callee-FP

object types o ::= Object | Fixnum | Heap | (o1 ∪ . . . ∪ on) | Name
〈
o1

1, . . . , o1
n
〉

records ρ ::= Name
〈

oϕ
1 , . . . , oϕ

n

〉
initialisation flags ϕ ::= 1 (initialised) | 0 (uninitialised)

No unions have only one member: t ⊔ t = t
No Bottom in unions: t ⊔⊥ = t

Unions are deduplicated: t ⊔ (o1 ∪ . . . ∪ on) = (o1 ∪ . . . ∪ on) when t ∈ o
Unions contain object types only: t1 ⊔ t2 = (t1 ∪ t2) when t1 ≤ Object∧ t2 ≤ Object

Everything else becomes Top: t1 ⊔ t2 = ⊤ when t1 ̸≤ Object∨ t2 ̸≤ Object
Unions are symmetric: t1 ⊔ t2 = t2 ⊔ t1

The intersection of the same type is that type: t ⊓ t = t
The intersection of a union is a union of intersections: (t1 ∪ t2) ⊓ s = (t1 ⊓ s) ⊔ (t2 ⊓ s)

The intersection of two types is the subtype: t1 ⊓ t2 = t when t1 ≤ t2

Everything else becomes Bottom: t1 ⊓ t2 = ⊥ otherwise
Intersections are symmetric: t1 ⊓ t2 = t2 ⊓ t1

The difference of subtype and supertype is Bottom: t1 − t2 = ⊥ when t1 ≤ t2

The difference of a union is a union of differences: (t1 ∪ t2)− s = (t1 − s) ⊔ (t2 − s)
. . .and when the other argument is a union too: t− (s1 ∪ s2) = (t− s1) ⊔ (t− s2)

The difference of a type and everything else is that type: t− s = t otherwise
(The difference is not symmetric.)

Every type is a subtype of Top: t ≤ ⊤
Every type is a subtype of itself: t ≤ t

Bottom is a subtype of every type: ⊥ ≤ t
Fixnum is a subtype of Object: Fixnum ≤ Object
Heap is a subtype of Object: Heap ≤ Object

All fully-initialised record types are subtypes of Heap: r
〈

f 1
1 , . . . , f 1

n
〉
≤ Heap

Unions are subtypes when all members are subtypes: (o1 ∪ . . . ∪ on) ≤ t when ∀o. o ≤ t
Unions are supertypes when some members are supertypes: t ≤ (o1 ∪ . . . ∪ o2) when ∃o. t ≤ o

Figure 3.3: The types, union (⊔), intersection (⊓), difference (−) and subtyping (≤) rules in
the type system.
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is true of a state when all values referenced by the registers and stack slots do not
have any record types with uninitialised fields. Such rules also require that all
written records have been logged by the write barrier. The predicate All-Logged

is true of a log which contains no values which need to be logged. The function
Needs-Barrier(log, value) produces a log with an additional value which needs to
be logged, and Log-Object(log, value) produces a log with an additional value which
was logged.

3.4 Values

If we would solely assign types to locations, spilling and unspilling registers could
prevent the type system from correctly updating the state with updated types. Con-
sider some object construction code (based on some code generated by my compiler)
which spills all its values to the stack, which we attempt to type whilst only consider-
ing the types of each location:

1 alloc x0, T
2 ;

{
x0 : T

〈
U0〉} by Alloc

3 str x0, [sp, 0]
4 ...
5 ldr x1, [sp, 0]
6 ;

{
x2 : U;x1 : T

〈
U0〉 ; [sp, 0] : T

〈
U0〉} by Stack-Load

7 str x2, [x1, 7]
8 ;

{
x1 : T

〈
U1〉 ; [sp, 0] : T

〈
U0〉} by Record-Store

9 ...
10 ldr x3, [sp, 0]
11 ;

{
x3 : T

〈
U0〉 ; [sp, 0] : T

〈
U0〉} by Stack-Load

12 ldr x4, [x3, 7] ; Error! The field of x3 is uninitialised.

x25 is reserved as a temporary register used solely for loading values which have
been allocated to a stack slot; it is reloaded before every use of a value in a stack slot
(as on line 5), and it is written to the stack after every instruction which updates the
value in a stack slot (as on line 3). The store on line 7 initialises the single field of the
object, whilst the object is referenced by both x25 and [sp, 0], but only the type of
x25 is updated when the field is initialised. Since the reference itself is not updated
by the store instruction, the reference is not written back to the stack. The subsequent
code in lines 10 and 12 use the value in [sp, 0] and the type system reports that the
field is uninitialised, despite that we did initialise the field.

The solution I use to associate the register and stack slot in this example together, is
to indirect the types of locations through values, as is done in Coolaid. Thus locations
have values and values have types. The separation of types and values also allows
for introducing allocation folding without cluttering the definitions of operations on
types: allocation folding is represented by the fact that a location may have multiple
values of record types, when the records are known to be adjacent in the heap, due to
allocation folding having allocated them so. Values are not propagated through the
heap; doing so is complex and does not appear to allow for type-checking any more
optimisations.
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Abstract interpretation requires an equality function on states. If the state only
contained types, we could define equality of two states to be that each location has
the same type in either state. We must further require that the values are equivalent
somehow when we extend states to track values. But requiring that the values of
locations are identical between states is too strict, and may cause abstract interpreta-
tion to never terminate with loops: if abstract interpretation of a loop body produces
states with new values, abstract interpretation will produce new values on every
iteration. Instead I define equality of states to be that there is a one-to-one mapping
(a bijection) of values between the states, and that the values related by the bijection
have equal types. The algorithm for finding a bijection is presented in Figure 3.4. The
exact same values must be logged between environments however, as otherwise a
loop body could cause an unbounded number of new values to not be logged, and
abstract interpretation would never terminate.

Abstract interpretation also requires a function to merge (union) all of the states
preceding an instruction, in order to produce an approximation which correctly
reflects the machine state regardless of whichever predecessor instruction was last
executed by the machine. For simplicity I will describe the operation in terms of
computing the union of just two input states, for which union of more than two input
states is computed by reducing the union function over all input states. I use the
algorithm for merging values from Coolaid, where a union of a value and itself is the
same value, and otherwise each pair of values having their union taken is assigned a
new value. The algorithm assigns types to values being the union of types from the
input states.

3.5 Fixnum Operations

The type system allows for operations on fixnums, without having to remove the tags.
Recall that fixnums are represented as integers with their tag bit set to zero, so that a
fixnum is encoded as its value shifted left one bit, which is equivalent to multiplying
the value by two. Addition of fixnums produces a fixnum, because the multiplication
factor is preserved in 2x + 2y = 2(x + y); subtraction, bitwise-and, bitwise-or and
bitwise-xor have the same property.

Writable(result)

{arg1 : Fixnum; arg2 : Fixnum}
add | sub | and | orr | eor result, arg1, arg2 (Fixnum-Tag-Preserving-Op)

{result : Fixnum}+1

However, bitwise-not inverts the tag bit from 0 to 1, which would appear to
produce a reference to a record. Instead the result is typed as an untagged integer,
which can then be turned into a fixnum by setting the tag bit to zero, which in turn is
achieved by performing bitwise-and with an integer with all but the least significant
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1 Equal(s1, s2) =
2 seen = new set
3 Unify(v1, v2) =
4 if (v1, v2) is in seen return true
5 if v1 or v2 appear in different pairs in seen
6 return false from Equal

7 if s1.type(v1) ̸= s2.type(v2)
8 return false from Equal

9 else add (v1, v2) to seen
10

11 UnifyAll(l1, l2) =
12 if Length(l1) ̸= Length(l2) return false
13 for v1, v2 being pairwise elements of l1 and l2
14 Unify(v1, v2)
15

16 if the log of e1 ̸= the log of e2 error
17 for r1, r2 being pairwise values in registers of s1 and s2
18 UnifyAll(r1, r2)
19

20 if Length(the stack frame of e1) ̸= Length(the stack frame of e2)
21 return false
22 for t1 , t2 being pairwise values in stack slots of s1 and s2
23 UnifyAll(t1, t2)
24

25 return true

1 Union(s1, s2) =
2 values = new map
3 result = new state
4 UnionValue(v1, v2) =
5 type = s1.type(v1) ⊔ s2.type(v2)
6 if v1 = v2 then value = v1
7 else if (v1, v2) is a key in values then value = values[(v1, v2)]
8 else
9 values[(v1, v2)] ← new value

10 value = values[(v1, v2)]
11 result . type(value) ← type
12 return value
13 UnionValues(l1, l2) =
14 return [UnionValue(v1, v2) : v1, v2 being pairwise elements of l1 and l2,
15 ignoring remaining elements when one is shorter]
16

17 for r being each register
18 result .values(r) ← UnionValues(s1.values(r), s2.values(r))
19 for s being each stack slot in both s1 and s2
20 result .values(s) ← UnionValues(s1.values(s), s2.values(s))
21

22 if s1.log.unlogged ̸= s2.log.unlogged then error
23 result . log ← log(s1.log.unlogged, s1.log.logged ∩ s2.log.logged)
24 return result

Figure 3.4: The algorithms for equality and unions of states s1 and s2.
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bit set i.e. . . . 1110 = −2.

Writable(result)

{value : Fixnum}
not result, value (Fixnum-Not)

{result : Untagged}+1

Writable(target)

{source : Untagged}
and target, source,−2 (Fixnum-Tag-Losing-Lsb)

{target : Fixnum}+1

Division eliminates the tag bit: common factors in the dividend and divisor are
eliminated in a division such as 2x

2y = x
y , producing an untagged result. The quotient

thus needs to be shifted left by one bit to produce a fixnum; setting the tag bit to zero
would also produce a fixnum, but would lose the least significant bit of the quotient.

Writable(quotient)

{dividend : Fixnum; divisor : Fixnum}
div quotient, dividend, divisor (Fixnum-Div)

{quotient : Untagged}+1

Writable(target)

{source : Untagged}
lsl target, source, 1 (Fixnum-Tag-Shift-Left)

{target : Fixnum}+1

Multiplication has the opposite problem of producing one too many zero bits as
2x × 2y = 2× 2× xy. We could shift the product right by one bit to get the right
number of zero bits, but the most significant bit of the product would overflow in the
multiplication. Instead we compensate for this by having one argument be untagged
beforehand, in order to produce a product which is only shifted by one bit. Untagging
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Instructions Arguments Behaviour

alloc d, types Regd ← allocate uninitialised records

write-barrier s log the record Regd

branch-instance-of s, type, label if Regs is an instance of type, PC← label
branch-not-instance-of s, type, label if Regs is not an instance of type, PC← label

Figure 3.5: Magic instructions in Pulstar.

is achieved by shifting a fixnum right by one bit.

Writable(target)

{source : Fixnum}
asr target, source, 1 (Fixnum-Untag-Shift-Right)

{target : Untagged}+1

Writable(product)

{arg1 : Fixnum; arg2 : Untagged}
mul product, arg1, arg2 (Fixnum-Mul)

{product : Fixnum}+1

3.6 Magic Instructions

I introduce several magic instructions as in Figure 3.5, which stand in for instruction
sequences, as verifying the instruction sequences would be difficult. The alloc
instruction allocates (possibly multiple) uninitialised objects similar to the malloc
instruction in Morrisett et al. [1999]; these objects are always allocated adjacent to
each other. The write-barrier instruction performs a write barrier on its argument.

The branch-instance-of and branch-not-instance-of instructions attempt to
downcast their argument and branch if the downcast succeeds or fails, respectively.

{register⇝ [value, _...]; value : Heap; before-type = Type(value)}
branch-instance-of register, type, target (Branch-Instance-Of)

{value : before-type− type}+1

{value : before-type⊓ type}target
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{register⇝ [value, _...]; value : Heap; before-type = Type(value)}
branch-not-instance-of register, type, target (Branch-Not-Instance-Of)

{value : before-type⊓ type}+1

{value : before-type− type}target

3.7 Initialisation

The typed assembly language tracks whether each field of a record is initialised. A
runtime could also pre-zero all memory to ensure that the garbage collector may
safely traverse uninitialised objects, if zeroes always denote valid values (such as a
null pointer for a field containing a reference). Pre-zeroing is convenient when the
language requires that fields are zero-initialised before constructor code from the
application runs. But pre-zeroing has considerable time and bandwidth overheads,
and thus compilers attempt to optimise initialisation by attempting to replace zero
stores with subsequent initialising stores.

We require that all objects are initialised at potential safepoints (function calls and
alloc magic instructions), so that the garbage collector will only encounter initialised
fields. Another option would be to allow fields to be uninitialised at safepoints, but
have the stack map (which was generated from the inferred types) indicate to the
collector which locations refer to objects with uninitialised fields; such objects are
only accessible directly from the registers and stack slots, as references to such objects
cannot be written to the heap.

This model of initialisation might be inadequate for concurrent programming
languages with shared memory. An instruction set with a weak memory model such as
AArch64 may allow other threads to observe an initialising write to an object and a
write of a reference to that object out of order. Then other threads may observe the
object being uninitialised, despite the thread which initialised the object observing
that it performed the initialisation before writing any references to the object. A
common solution is to issue a fence instruction to prevent writes from being reordered:
a fence is performed after final fields in Java have been initialised, and runtimes
which pre-zero allocated memory often fence after zeroing the memory so that other
threads will at worst read zero values in fields. A compiler may also re-order writes
when the compiler determines the order of the writes cannot affect behaviour; this has
similar ramifications for concurrency, and I will explain one solution in Section 4.1.1.

However, some concurrent languages ensure other threads only read initialised
values without requiring a fence after object construction, for which the current
model of initialisation suffices: Multicore OCaml only fences when an object escapes
a thread-local heap [Dolan et al., 2018], and the BEAM2 for Erlang only ever copies
messages between process-local heaps.

2Bogdan or Björn’s Erlang Abstract Machine
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3.8 Records

The mutator may only read fields of records which the mutator had initialised be-
forehand, and the mutator can initialise a field by writing values to a field. The
displacement must be one byte less than word-aligned, so that adding the tag bit and
the displacement will produce an aligned pointer. The first field is always one word
after the start of the object, as the first word is the header word (which Pulstar does
not provide a way for the mutator to access).

Writable(value); Aligned(displacement + 1); index = Floor(displacement + 1, 8)− 1; index ≥ 0

{type = Type(record); type is a record type; Field-Initialised(type, index)}
ldr value, [record, displacement] (Record-Load)

{value : Field-Type(type, index)}+1

Recall that the log contains a set of values which the mutator has run a write
barrier for. This set alone would suffice to check whether a write may be performed
if all write barriers are run before their respective writes. But some write barriers
are run after their respective writes; in order to support running write barriers after
writes, the type system also tracks values which the mutator must log before the
mutator can reach a safepoint.

The behaviour of Alloc and Record-Store encode which writes to records the
garbage collector must be notified of. Allocation is involved in write barrier elimina-
tion because a newly-allocated object is known to initially be in the young generation,
and the garbage collector may not need to be notified of writes to young objects.
The information about which objects are new is encoded in the abstract state by
following an approach to using a generational collector with a logging barrier: the
allocator allocates objects such that the write barrier will treat the objects as if they
were already logged (that they are dirty), so that the slow path will not be taken on
newly allocated objects [Blackburn and McKinley, 2003]. The Alloc rule applies
this approach to abstract states by treating the values for newly-allocated objects as
having been logged in successor states.

The mutator also may not need to perform a write barrier when writing a value
which is not a reference to the heap (an immediate value), depending on the garbage
collector. All immediates in Pulstar are fixnums; runtimes without type-tagging (such
as those for Java) may still have a null value which is immediate by this definition,
and thus the same reasoning applies for null. If the collector uses an insertion barrier
where the collector is informed of when the mutator creates new references to objects
on the heap, a write barrier is not necessary when writing an immediate value. If
the collector however uses a deletion barrier where the collector is informed of when
the mutator removes references to objects on the heap, we could only eliminate a
barrier if the previous value of the field was known to be immediate. It is unlikely
we know the type of the previous value: in the cases that we can determine the type,
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such as when the program performs multiple writes to the same field in one function,
the compiler should have eliminated all but the last write, leaving no barriers to
eliminate.

The following rules assume a generational collector, where objects are allocated
dirty, and that the collector uses an insertion barrier which only needs to be run when
the mutator creates references from old objects to new objects:

Writable(register); values = [Value(Uninitialised(r)) : r← records]

{All-Values-Initialised; All-Logged(Log)}
alloc register, records (Alloc)

{Erase-Multiple; register⇝ values; Log = Log-Objects(values)}+1

Aligned(displacement + 1); index = Floor(displacement + 1, 8)− 1; index ≥ 0


type = Type(record); type is a record type;

value : Field-Type(type, index); log = Log;

is-fixnum = value : Fixnum; record⇝ [before-value, _...]


str value, [record, displacement] (Record-Store){

before-value : Initialise-Field(type, index);
Log = if is-fixnum then log else Needs-Barrier(log, before-value)

}+1

{target⇝ [v, _...]; log = Log}
write-barrier target (Write-Barrier)

{Log = Log-Object(log, v)}+1

3.9 Stack Frames

A function may only modify the stack pointer by incrementing and decrementing it
in multiples of two words, so that the stack pointer is always aligned to two words.
The new stack slots produced by Grow-Stack are unitialised and have no values.
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diff ≥ 0; Double-Aligned(diff)

{}
sub sp,sp, diff (Grow-Stack)

Grow-Stack(Floor(diff, 8))+1

diff ≥ 0; Double-Aligned(diff)

{Length(Stack-Frame)− Floor(diff, 8) ≥ 0}
add sp,sp, diff (Shrink-Stack)

Shrink-Stack(Floor(diff, 8))+1

Values may be loaded from and stored to the stack frame. Recall that the state
associates stack slots with values and not types, so the update rules are written in
terms of values. AArch64 also allows for loading and storing two registers at once,
which compilers often generate when spilling and reloading values around function
calls. Loading two values to the one register is undefined in AArch64, so we reject
ldp instructions which load to the same register twice. Write barriers are also not
used for writes to the stack.3

Aligned(offset); Writable(target)

{[sp, 8(Floor(offset, 8))]⇝ values}
ldr target, [sp, offset] (Stack-Load)

{target⇝ values}+1

target1 ̸= target2; Double-Aligned(offset); Writable(target1); Writable(target2)

{[sp, 8(Floor(offset, 8))]⇝ values1; [sp, 8(Floor(offset, 8) + 1)]⇝ values2}
ldp target1, target2, [sp, offset] (Stack-Load-Pair)

{target1⇝ values1; target2⇝ values2}+1

3The stp and ldp instructions are not limited to the stack, and can be used for records; I simply
did not write the analogous rules for records, nor does my compiler emit such instructions.
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Aligned(offset)

{source⇝ values}
str source, [sp, offset] (Stack-Store)

{[sp, 8(Floor(offset, 8))]⇝ values}+1

Double-Aligned(offset)

{source1⇝ values1; source2⇝ values2}
stp source1, source2, [sp, offset] (Stack-Store-Pair)

{[sp, 8(Floor(offset, 8))]⇝ values1; [sp, 8(Floor(offset, 8) + 1)]⇝ values2}+1

3.10 Calling Convention

Pulstar can type check a subset of the AArch64 calling convention [Arm Limited,
2024]. The types LR, SP, Caller-FP and Callee-FP are used for the calling convention,
being used to type the link register, stack pointer, frame pointer of the caller and
frame pointer of the callee respectively. Performing a function call with the ARM
bl instruction stores the address to return to in the link register, as opposed to the
x86 call instruction pushing the address onto the stack. The stack pointer grows
“downwards” to lower addresses, so the stack pointer must be decremented to allocate
space for stack slots, and incremented to free all space before returning from a
function (or before performing a tail-call).

A function must first set up a frame pointer (a value of the type Callee-FP) by
producing a pointer near the end of the stack frame, before it can perform another
function call. The frame pointer is exactly two words lower than the upper end of the
stack frame, leaving room for saving the stack pointer and link register (a frame record)
across a function call, as depicted in 3.6. This information may also be required by a
precise garbage collector to scan the roots: the runtime would use each saved value of
the link register to find the stack map relevant for each stack, with the information in
the stack map being relative to the stack pointer. The collector can traverse all frames
by following the saved frame pointers, which form a linked list of frame records.
Note that the contents of the frame record are checked by the rules involving function
calls and not by the rule to establish a frame pointer, as a function could compute its
frame pointer and then overwrite the record with other values before performing a
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caller LR

caller caller FP

caller values

link register

caller FP

FP

spilled values

SP

Figure 3.6: The stack in AArch64.

function call with an invalid frame record.

diff = 8× Length(Stack-Frame)− 2

{Length(Stack-Frame) ≥ 2}
add fp,sp, diff (Initialise-FP)

{fp : Callee-FP}+1

Values of each of LR, Caller-FP and Callee-FP may be spilled onto the stack and
moved between registers, so long as they are reinstated to the appropriate registers
when needed when returning and performing function calls4. These types cannot be
stored to the heap as fields of records can only have object types; consequentially a
function can only use values of the types LR and Caller-FP which were provided to it.
The arguments are passed in lexicographic order in the registers not used for other
purposes by the calling convention, excluding x25 through x27 for loading spilled
values from the stack, leaving x0 to x15 and x18 to x25. Thus we have the rules for

4The typed assembly language also permits functions which do not call other functions (leaf functions)
to not establish a stack frame, though the compiler does not perform this optimisation.
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calls, tail calls and returns:

slots = Length(Stack-Frame); return-type = Return-Type(target)


fp : Callee-FP; [sp, 8(slots− 2)] : Caller-FP;

[sp, 8(slots− 1)] : LR; All-Values-Initialised;

Arguments-Match(target); All-Logged(Log)


bl target (BL-Call){

Overwrite-Caller-Saves; Erase-Multiple;

x0 : return-type; Log = Empty-Log

}+1

target is a function

{
All-Values-Initialised; Arguments-Match(target);

0 = Length(Stack-Frame); All-Logged(Log)

}
b target (B-Tail-Call)

return-type = Return-Type(current-function)


lr : LR; fp : Caller-FP;

x0 : return-type; 0 = Length(Stack-Frame);

All-Logged(Log)


ret (Ret)

All arguments are passed in registers and all registers are caller-save for simplicity.
Tail calls with arguments on the stack would be tricky otherwise, and the register
allocator would have to distinguish between callee-save and caller-save registers.
I did not implement a runtime accompanying the compiler and typed assembly
language, but callee-save registers would also complicate stack scanning [Click, 2016].
Optimising the calling convention is generally less important with inlining, making
callee-saves registers less appealing for compilers which inline heavily.5 We could
still introduce more opaque types to enforce that the callee preserves the callee-saves
registers, similar to the generic types used by Morrisett et al.

5This theory came up in separate private discussions with Cliff Click and Robert Strandh.
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3.11 Summary

I designed a typed assembly language for AArch64 which can handle arbitrary control
flow through abstract interpretation and can precisely narrow the types of values
aliased between registers and stack slots. The typed assembly language additionally
tracks allocation folding, enforces that all objects are initialised at safepoints, and
enforces that write barriers are performed correctly.



Chapter 4

Implementation

To practically evaluate the type system I need a compiler to produce code to type-
check. One could (and probably would, in practice) retrofit the type checker onto a
production compiler, but this appears complicated due to production compilers being
difficult to extend; Steve Blackburn reported that retrofitting the MMTk garbage
collector onto V8 was very complex [Blackburn, 2020] due to tight coupling in V8,
which suggests that retrofitting a typed assembly language-based backend to V8 or
another production compiler would take too much time for this thesis. Instead I
wrote a simpler compiler for a simple source language, which still has the essential
issues relevant to this thesis. I also need to implement the type inference engine
in order to check that it can validate a corpus of code, and in order to measure its
performance; a careful choice of representation and data structures allows for faster
type inference whilst keeping the code close to the declarative rules which define the
type system.

4.1 Compiler Design

I implemented a compiler which compiles code for the Utena abstract machine [Lu-
lamoon, 2023; Applied Language, 2023] to AArch64 assembly.1 Utena most closely
resembles the Newspeak programming language; the abstract machine is very simple
but retains some core concepts common with more mainstream languages like Java
and JavaScript, which more strongly influence the compiler and runtime design than
the rest of the concepts in the programming languages (such as the syntax of the
programming languages). In particular, Utena is dynamically typed, object-oriented
and uses automatic memory management. The Utena abstract machine further ex-
acerbates the issues in implementing a high-performance runtime in several ways.
The Utena abstract machine uses heap-allocated objects for storing arguments and
local variables, uses method calls for control-flow and local variables like Self [Ungar
and Smith, 1987], and uses objects as modules like Newspeak [Bracha et al., 2010].
Objects are also initialised to have unbound slots2 alike CLOS before the slots are

1This compiler is available at https://gitlab.com/cal-coop/utena/movement-three.
2The word “slot” is used in Utena where “field” is used for Java, as CLOS and Newspeak use the

word “slot”. The language-level concept of a “slot” only appears in this section, and elsewhere in this
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properly initialised with user values; an unbound slot is represented by storing a
non-zero value in the slot, so pre-zeroing does not correspond to any language-level
initialisation. A fast implementation therefore requires the optimising compiler to
eliminate allocations, polymorphism and initialising stores when possible, and for the
runtime to have fast allocation and method dispatch. Therefore this system especially
exercises the allocation folding and initialisation tracking of Pulstar.

The compiler compiles the source language to class and method definitions for
the Utena abstract machine, then to a sea-of-nodes-based intermediate representation
[Click and Paleczny, 1995], then schedules into a control flow graph, then allocates
registers. The compiler performs inlining, type-based alias analysis [Diwan et al.,
1998], some constant folding, global value numbering, loop-invariant code motion,
and linear-scan register allocation [Poletto and Sarkar, 1999]. It compiles a whole
program ahead-of-time for simplicity; it specialises methods by argument types [Dean
et al., 1995] in order to gain some of the type information that just-in-time compilation
would find by profiling, and to better exercise the type inference engine with functions
with different argument types.

There are two main limitations which affect what code can be used to evaluate
Pulstar. The compiler notably does not support floating-point numbers, which are
just another kind of unboxed data and do not introduce any new memory safety
issues. The compiler would need to be able to allocate floating-point registers (which
are separate from the general-purpose registers), and the compiler would need to be
able to box and unbox floats around float operations3; so supporting floating-point
numbers would require substantial effort which does not further exercise the garbage
collection interface. Utena also currently does not have any inheritance mechanism
to implement, so the compiler does not implement any inheritance mechanisms.

4.1.1 Initialisation

The sea-of-nodes is characterised by explicitly representing all dependencies as inputs
and outputs to instructions (nodes), including the control flow and memory effects,
and by having as few dependencies as possible between nodes. This representation
has two main advantages: it first allows for more optimisations to be represented as
simple graph rewriting rules (peepholes), including some restructuring of control flow
and optimising redundant reads and writes to memory. Optimisations on control
flow tend to be done on a separate control-flow graph which must be manipulated in
a different way, when not using a sea-of-nodes compiler. The memory flow is also
usually only implicit in other intermediate representations, so a different algorithm
must be used to analyse and eliminate memory operations.

The compiler must then schedule its sea of nodes into a sequential representation
for the compiler to emit assembly. The second advantage is that the scheduler can

thesis I use the word “field”. Slots in Utena do not directly map to fields in Pulstar, as the compiler
introduces another field to objects in order to store the parent object for lexical scoping.

3Strictly speaking, we could emit boxing and unboxing code around every floating point operation;
then we can always reuse the same floating-point registers for every operations and not have to do any
register allocation. However, this arrangement would produce rather poor code.
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Figure 4.1: Type-based alias analysis in the sea of nodes.

move nodes around arbitrarily, including by moving nodes out of loops and into
rarely-executed branches, so long as the scheduler preserves the order of dependen-
cies and places all dependent nodes after their dependencies. The scheduler can
interact with type-based alias analysis, which assumes that accesses to different fields
of different types can never affect each other. For example, in a program:

1 class C { a; b; }
2 C c = new C();
3 c.a = 1;
4 c.b = 2;
5 print(c.a);

the write to c.b cannot possibly affect c.a, so we can determine that the value
of c.a must be 1. This information is represented in my compiler by introducing
nodes which split off a particular field from the memory effects, and nodes which
then merge a split-off effect with the rest of the effects (the bulk). Then a peephole
rule rewrites a memory-split node which follows a memory-merge node: if the split
is for a field which was involved in the merge, the rule replaces the split node with
the effect prior to the merge. Otherwise the split is rewritten to split out from the
bulk input to the merge, bypassing the merge. Another rule coalesces merge nodes
when they immediately precede other merge nodes. An example of these peepholes
is depicted in Figure 4.1. The results are that the scheduler may schedule the writes
in any order, and that further peepholes on a subsequent read can quickly find the
last write to its field.

However, the scheduler could cause a reference to an object to be written to a
field before the object is initialised if it schedules other writes with an object before it
schedules initialising writes to the object. Consider another program:
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1 class O { x; }
2 class Box { y; }
3 Box b = new Box();
4 b.y = 0;
5 O o = new C();
6 o.x = 1;
7 b.y = o;

Using type-based alias analysis yields the graph in Figure 4.2(a). There are no
dependencies between the two writes, so the scheduler may choose to schedule the
writes on lines 6 and 7 in any order. If the scheduler chooses to schedule b.y = o
first (and new does not initialise either object), it will have written a reference to an
uninitialised object, which is ill-typed, and could expose other threads to uninitialised
fields in a concurrent program. A solution, used by the C2 compiler in HotSpot, is to
insert a fence node between the initialisation and uses of an object; in Figure 4.2(b) the
compiler inserted Construct-Fence nodes which force a use of a new object to depend
on the memory effects which initialised the object with unbound slots (denoted with
the unbound marker value +UNBOUND+). The compiler however cannot optimise around
the fence node, and now has written all of the unbound marker, a constant 0, and the
object o to b.y in quick and needless succession. The write of the unbound marker
can be replaced with the write of the constant 0 as in Figure 4.2(c), as the constant is
always initialised, and so we cannot end up with another ill-typed schedule in doing
so. We cannot, however, push the write of o before the fence, as that would produce
a cycle in the memory effects.4

4.2 Type Inference Engine Implementation

The type checker revolves around manipulating abstract states, of which the more
complex part is to represent the relations between locations, values and types. I used
arrays to map from locations to lists of values, as the number of registers is constant,
and the stack slots have consecutive offsets from zero to the size of the stack frame (as
established by Grow-Stack and Shrink-Stack). A simple approach to representing
the relation between values and types in a state is to use a hash table, with values
compared by object identity; but I found that lookups in hash tables and copying hash
tables were too slow.5 Instead, each state uses an array to represent the relation of
values to types in a state, and each state also maps each location to a pair of a local
index and a global ID. The local index indexes into an array of types of values: we
only ever add values to states, and so we can assign the next index in the array to
a value when we extend the array with the type of that value. This index however
may not be the same for the same value in different states, when combined with the

4My compiler only allows writes of arguments and constants to be pushed before fences, but C2 uses
a more elaborate test which permits more writes to be pushed: https://github.com/openjdk/jdk/blob/jdk23/
src/hotspot/share/opto/memnode.cpp#L4581-L4693

5Gábor Melis developed an adaptive hashing scheme [Melis, 2024] concurrently with the writing of
this thesis, which was recently upstreamed in Steel Bank Common Lisp. His changes are likely to speed
up the type checker, but I think my current approach would still be faster by avoiding hashing entirely.

https://github.com/openjdk/jdk/blob/jdk23/src/hotspot/share/opto/memnode.cpp#L4581-L4693
https://github.com/openjdk/jdk/blob/jdk23/src/hotspot/share/opto/memnode.cpp#L4581-L4693
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Figure 4.2: Using a construction fence to prevent the publication of uninitialised objects.
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garbage collection scheme to be described. Instead the global ID is used to compare
if two values are the same. The global ID does not index into any data structure, and
so it is held stable between states.

The abstract state can accumulate garbage values which are not reachable from
any locations. Two back-to-back instructions with the same destination register will
create garbage for example, as the value produced by the first instruction will be
unreachable after the second instruction. I did not implement any garbage collection
technique, although reference counting would suffice to reclaim garbage, as states are
acyclic. The amount of garbage is however bounded by the number of instructions in
a basic block, as the union operation on states only inserts live values into the output
state, similar to a copying garbage collector which copies the live values from one
semispace to the other semispace [Fenichel and Yochelson, 1969].

I wrote the type checker and compiler in Common Lisp, which provides a macro
system to extend the syntax of the programming language. Macros have allowed me
to write the type inferencer in a manner similar to the mathematical notation used for
describing the typing rules; I wrote a bespoke macro define-rule which allows for
writing rules in a similar manner to Hoare logic, by specifying requirements of the
predecessor state to a rule and how to construct successor states. The implementation
of three rules is presented in Figure 4.3: a rule contains a name and a pattern6 for an
instruction to match (on lines 1, 13 and 20-21), values to bind from the predecessor
state (on lines 2–4 and 16), conditions which must hold (lines 5–9, 14–15 and 21) and
the successor states (lines 11, 18, and 25–26).

Pulstar runs the rules of the type system by calling a compiled function which
performs the pattern-matching dispatch. Pulstar pre-computes this compiled function
by collecting all the rules, combining the code of each into one match form, and
compiling a function with that code by using the Common Lisp function compile.
Pulstar also includes a pretty printer which generates LATEX source code from the rules,
which I used to present the rules in Chapter 3; some rules contain forms to guide the
pretty printer, or replace the output outright (such as emitting, as on line 3).

4.3 Summary

This chapter presented a compiler which we will use to test the type system in
Chapter 5, and the data structures used to efficiently implement the type system
while keeping the code at a high level and without visible mutation.

6Common Lisp does not have pattern matching; I used the pattern matching library Trivia https:
//github.com/guicho271828/trivia/.

https://github.com/guicho271828/trivia/
https://github.com/guicho271828/trivia/
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1 (define-rule ret (’arm:ret ’())
2 :given return-type :=
3 (emitting "\\mathsc{Return-Type}(\\var{current-function})"
4 (convert-mt-type (mt:code-return-type *code*)))
5 :when (has-type-p before arm:*lr* +lr+) :else (error "LR␣not␣in␣LR")
6 :when (has-type-p before arm:*fp* +fp+) :else (error "FP␣not␣in␣FP")
7 :when (has-type-p before (mt:register 0) return-type)
8 0 := (length (type-env-stack before))
9 :when (logging-state-all-logged-p (type-env-log before))

10 ---
11 :stop)
12

13 (define-rule stack-load (’arm:ldr (list target (eq arm:*sp*) offset))
14 :given (aligned-p offset)
15 :given (writable-register-p target)
16 values := (get-values before (stack-location (floor offset 8)))
17 ---
18 (update-type-env before (:values target) values))
19

20 (define-rule bcc-local ((or ’arm:blt ’arm:ble ’arm:beq
21 ’arm:bne ’arm:bge ’arm:bgt)
22 (list target))
23 :given (movement-three::basic-block) := target
24 ---
25 before
26 target before)

Figure 4.3: Use of the define-rule macro to define Ret, Stack-Load and Bcc-Local.
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Chapter 5

Evaluation

The previous two chapters detailed the type system of Pulstar and how I have effi-
ciently implemented Pulstar respectively. Chapter 4 also introduced my compiler for
the Utena abstract machine which targets Pulstar. Now we may evaluate the efficacy
of Pulstar. The main result is if we are able to type-check all of the output of the
compiler. Then we also prefer to have a small implementation to minimise the trusted
computing base, and we prefer fast type-checking in order to reduce the overhead of
using a typed assembly language as a defense in production.

Pulstar is implemented in 829 lines of Common Lisp code, approximately a quar-
ter of the size of my 3,454-line compiler. Either line count excludes the tests and
visualisation tools I wrote for either codebase, which are not involved at all when
using either codebase normally. Only the type inference engine itself is the trusted
computing base when using a typed assembly language, and only the compiler is
the trusted computing base when not using a typed assembly language (or some
other mitigation against an untrusted compiler). This ratio is less extreme than, for
example, the 14 thousand-line iTalX checking the output of the 200 thousand-line
Bartok compiler. But an important effect of using a typed assembly language (or
translation validation) is that the typed assembly language should seldom need to
change when the compiler changes. My compiler would undoubtedly grow in size
and complexity from adding some of the many missing optimisations. For example,
the compiler should split control-flow to eliminate redundant tests on union types
[Chambers and Ungar, 1990] and should use a better register allocation algorithm
(such as second-chance bin packing [Traub et al., 1998]), and such optimisations could
be implemented without modifying Pulstar.

5.1 Test Cases

I ported many of the benchmarks in the are-we-fast-yet benchmark suite [Marr et al.,
2016] to Utena, excluding the benchmarks which use floating-point numbers or in-
heritance, leaving the benchmarks in Table 5.1.1 I also ported some support code,
consisting of the custom pseudo-random number generator in the benchmark harness
(Harness), some of the data structures in the Newspeak platform (Platform), and stan-

1These benchmarks are available at https://gitlab.com/cal-coop/utena/are-we-fast-yet/.
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Table 5.1: The benchmarks and support code ported to Utena.

Name Lines of code

Benchmarks

Bounce 37

Havlak 334

List 31

Permute 28

Queens 46

Sieve 18

Storage 17

Towers 48

Support code

Harness 7

Platform 53

SOM 177

dard versions of data structures which have been ported to every language used in
benchmarks (taken from the Simple Object Model, SOM [Haupt et al., 2010]). Pulstar
is able to type check all of the compiler output when compiling these benchmarks.

5.2 Type Checking Speed

Each benchmark was compiled 100 times with and without the type checker, resulting
in the timings in Table 5.2. The time taken type checking is quadratic with regards
to the number of instructions and to the number of basic blocks as in Figure 5.1;
with the number of basic blocks being more correlated with time than the number
of instructions. The compile time overheads vary between 12% and 17% with a geo-
metric mean of 13%. A comparison with prior work is difficult, as the prior work on
typed assembly languages seldom discusses type checking time, and if performance
is mentioned, any comparisons would be between almost entirely dissimilar systems.
Pulstar nonetheless introduces more overhead on average but less variable overhead
than iTalX, which has overhead varying between “about 1%–35% of compilation time,
with a geometric mean of 8%” [Tate et al., 2010]; again noting that these results com-
pare different code being compiled, different compilers and different type systems
on different hardware.

The quadratic behaviour is due to that the number of times a basic block is re-
visited grows linearly with the number of basic blocks, as in Figure 5.2. This is
consistent with the results of Tate et al. who found that their “type inference is more
sensitive to the control flow structures of methods” and complex control flow can
cause “type inference [to take] much longer to reach a fixed point for preconditions
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Table 5.2: Compile times (in milliseconds) with and without the typed assembly phase.

Program Without TAL With TAL Ratio

Bounce 30.3 35.5 1.17

Havlak 252 286 1.13

List 44.0 50.1 1.14

Permute 26.4 29.5 1.14

Queens 20.1 22.6 1.12

Sieve 21.1 23.8 1.12

Storage 11.1 12.5 1.13

Towers 60.8 69.0 1.14

Geometric mean 1.13

of basic blocks”. But the number of times that basic block are re-visited is heavily
dependent on the order in which basic blocks are traversed: basic blocks are on
average traversed 1.41 times when using a queue of basic blocks to visit, which
produces a breadth-first traversal. Basic blocks are on average traversed 2.94 times
when using a stack of basic blocks to visit, which produces a depth-first traversal. If
the inference algorithm produces a different successor state from visiting a basic block,
the algorithm must then enqueue all successors of that basic block to be revisited later.
Type inference using a stack performs more visits as the inference algorithm pops
the successors to a merge in the control flow before it pops the predecessors leading
to the merge, and then the algorithm must revisit the successors after visiting any
predecessor to the merge. In contrast, breadth-first search visits all blocks immediately
after a branch in the control flow before it visits the successors of any of those blocks,
accumulating more predecessor states for those successors.

5.3 Write Barrier Elimination Algorithms

I implemented an analysis which tracks which objects are known to be logged, op-
tionally including the allocate-logged optimisation. This analysis is performed both
per basic block (as is done in the Android runtime) and as a data-flow analysis; the
data-flow analysis eliminates exactly one more write barrier than the per-basic-block
analysis.

The most complex analysis tracks the possible generations of objects involved in
writes. This analysis is the most flexible, in that the garbage collection implementor
can elect to eliminate or preserve write barriers based on any combinations of known
generations. I chose to keep the barrier for only old-to-new references, which are
those relevant to a generational stop-the-world tracing collector.

The static count of write barriers eliminated per analysis is presented in Table 5.3;
most writes are initialising writes and write to objects allocated in the same basic
block. Using a data-flow analysis rather than a per-basic-block analysis eliminates
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Figure 5.1: The type checking time versus instructions and basic blocks per function.
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(a) Visits using depth-first traversal.
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(b) Visits using breadth-first traversal.

Figure 5.2: The average visits of basic blocks in each function versus the size of each function.
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Table 5.3: How many write barriers are eliminated by each algorithm.

Algorithm Without folding With folding

Logged before in same basic block 1209 1229

Logged before analysis 1210 1230

Same control input as allocation site – 3534

Logged before in same basic block + pre-logging 3666 3569

Logged before analysis + pre-logging 3667 3570

Generation analysis 3793 3630

Total writes 3940 3804

exactly one more write barrier in my analysis: a method set-nesting-level! in
Havlak takes an argument level, sets a field of the receiver to level, and then calls
root! if level is zero. root! then sets another field of the receiver. My compiler
inlines root! into set-nesting-level!, producing the assembly in Figure 5.3, which
allows the write in root! to not need a barrier.

The results suggest that the additional precision of a flow analysis may not be
worthwhile, and production runtimes have made a sensible tradeoff between imple-
mentation complexity and compiler speed on one hand, and the diminishing returns
in precision on the other. The C2 compiler, for example, only checks whether the
control-flow input to a write to a newly allocated object is the same as the control-flow
input to the node which allocated the object; my compiler using this check eliminates
99% of the writes that the logged-before analysis eliminates. The gap in precision is
unlikely to substantially affect performance: Zhao and Blackburn [2020] report an
average 12% time overhead for the write barrier used in the garbage-first collector,
for which eliminating 1% more write barriers could be estimated to have a minis-
cule 0.12% effect on run time. However, the inlining heuristic used by my compiler
is crude and untested, and too little inlining would cause the compiler to generate
functions with little code and little control flow, understating the effects of the flow
analysis.

5.4 Summary

Pulstar is able to validate the results of compiling much of the are-we-fast-yet bench-
mark suite, introducing a geomean 13% overhead on compile time. The implemen-
tation of Pulstar is about a quarter of the size of the compiler that Pulstar validates,
although the compiler is missing optimisations which would not require additional
complexity in Pulstar. The time spent type checking is quadratic to function size,
as the number of visits of each basic block grows linearly with the number of basic
blocks. The order in which basic blocks are re-visited by type inference drastically
affects type checking speed, and a breadth-first traversal requires fewer re-visits than
a depth-first traversal.
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1 (define (root!) (set! root? #t)) ; Instruction #16
2 (define (set-nesting-level! level)
3 (set! %nesting-level level) ; Instruction #8
4 (when (=: 0 level) (root!)))

(a) The methods set-nesting-level! and root! in Havlak.

Block #4 depth 0

15 mov x0, #«true-class»
16 str x0, x2, #39

ldp fp, lr, sp, #0
add sp, sp, #16

18 ret 

Block #3 depth 0

12 mov x0, #«false-class»
ldp fp, lr, sp, #0
add sp, sp, #16

14 ret 

Block #2 depth 0

7 mov x0, 0
8 str x1, x2, #47
9 write-barrier x2

10 cmp x0, x1
beq .B4

Block #5 depth 0 (cold)

ldp fp, lr, sp, #0
add sp, sp, #16

19 b #<Runtime method CRASH>

Block #1 depth 0

tbnz .B5, x1, #0

Block #6 depth 0 (cold)

20 alloc x0, Activation-Record
21 str x1, x0, #15
22 str x2, x0, #7

sub sp, sp, #16
stp x1, x2, sp, #0

23 bl #<Runtime method SAFEPOINT>
ldp x1, x2, sp, #0
add sp, sp, #16
b .B1

Block #0 depth 0

sub sp, sp, #16
stp fp, lr, sp, #0
add fp, sp, #0

1 mov x2, x0
2 mov x0, 1
3 ldr x3, tls, #15
4 cmp x3, x0

beq .B6

(b) The assembly generated for set-nesting-level!.

Figure 5.3: The store in set-nesting-level! (instruction #8) requires a write barrier
(instruction #9), but the second store in root! (instruction #16) does not.
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Chapter 6

Conclusion

Memory safety is a crucial prerequisite for secure software, and memory safety can be
attained through the use of garbage collection to automatically reclaim memory after
it cannot be used by the mutator. The correct function of a garbage collector depends
on the mutator following an interface which can include constraints on allocation,
initialisation and when the mutator must run write barriers, and these constraints are
often informal and not machine-checkable.

This thesis presented the typed assembly language Pulstar which formalises the
invariants of the garbage collection interface, and can validate that compiled code
for a mutator will not violate the invariants. The main contributions of Pulstar are
that Pulstar can validate that allocation folding is performed correctly and that the
compiler has emitted enough write barriers. The implementation of Pulstar is fast,
introducing a 13% geomean overhead on compile time, which could be acceptable
even when compilation speed is paramount as in just-in-time compiling runtimes.
The implementation is only 829 lines of Common Lisp code, suggesting that use of
a typed assembly language would drastically reduce the trusted computing base of
a runtime which would otherwise depend on the compiler to generate memory-safe
code.

Typed assembly languages provides a low-overhead approach to ensuring that
a user cannot be subject to security exploits involving memory unsafety or type
unsafety, and Pulstar illustrates how a typed assembly language may be designed to
the requirements of modern production runtimes. A static analysis such as Pulstar can
complement or outright replace time-consuming debugging checks. A program does
not have to be run for Pulstar to detect miscompilations, and a static analysis considers
all possible executions of the program at once, reducing the search space and thus
time needed for fuzzing to find bugs. Finally, Pulstar represents a novel approach
to designing typed assembly languages, by relying on the optimising compiler to
eliminate complex types, and instead expending complexity on new features such as
the model of the garbage collection interface.
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6.1 Future Work

One remaining issue is how to eliminate coupling between a typed assembly language
and its assumptions of the runtime system and source language. The typing rules
of Pulstar are too tightly coupled to one particular object representation and the
type inference algorithm. I have also presently only presented the type system in
a somewhat informal manner, which cannot easily be used to prove that the type
system is sound.

6.1.1 Decoupling Representations from the Typed Assembly Language

Whilst Pulstar supports one pointer tagging scheme (loosely based on the tagging
scheme used in Steel Bank Common Lisp), other runtimes using pointer tagging
may use different tags. For example, OCaml inverts the meanings of the tag bits,
such that fixnums are tagged with a 1 and references to records are tagged with a 0.
The typing rules around records and fixnums also assume the SBCL tagging scheme,
by implicitly encoding how the tag bits and pointer alignment are affected by each
operation. Applying the rule Fixnum-Tag-Preserving-Op for an add instruction for
example would not work with the OCaml tagging scheme, as adding two Fixnums
(odd integers) would result in a Heap reference (an even integer) contrary to the rule.

One way to decouple Pulstar from any object representation is have the type
system only have hard-coded rules for determining which bits in each location are
known to have particular values (a known-bit analysis). Then the type system would
consult a user-provided specification of the object representation to turn the bit
patterns into higher-level types. Such specifications of object representations have
appeared already appeared for the purpose of introducing custom representations
to high-level languages [Teo, 2024; Baudon et al., 2023]. The specifications would
also be required by the garbage collector for the garbage collector to trace objects
with the custom representations. The combination of typed assembly language and
garbage collector would allow multiple runtimes with different object representations
to share a heap, and could enable interoperability with higher-level data structures
and automatic memory management.

6.1.2 Verifying Type System Soundness

The complex parts of Pulstar are very different to the complex parts of most type
systems: Pulstar only uses monomorphic types and does not have first-class functions.
Pulstar however tracks aliasing in order to apply downcasting precisely, and its use
of abstract interpretation might complicate proving termination of type inference.
Formalising Pulstar in a proof assistant language is a prerequisite to a machine-
checked proof, and thus even just a formalisation would be a valuable first step. One
could use the extraction feature of some proof assistants to use a verified type checker
in a production runtime, whilst avoiding introducing bugs in translation to another
programming language.
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6.1.3 Separate Inference and Checking

Separating type inference and type checking would further simplify verifying the type
checker, as suggested in iTalX, and we could only trust the type checker. The type
inference would perform abstract interpretation solely to produce annotations for the
expected state at the start of per basic block. Then the checker would only compute
types following the annotations, identically to the original stack-based typed assembly
language of Morrisett et al. [2002], which would take linear time as the checker only
has to compute types for each basic block once. We could also cache the inferred
annotations alongside compiled code, and then only run the type checker against the
annotations to quickly ensure that previously compiled code, from a cache on disk or
downloaded from the Internet, is at least memory safe.

6.1.4 Removing Magic Instructions

The use of magic instructions in Pulstar may also be problematic for adoption in pro-
duction runtimes. I introduced the branch-instance-of and branch-not-instance-of
instructions, as the existing solution to representing downcast checks is slightly com-
plicated: Coolaid tracks which values contain the record headers (which Chang et al.
call “tags”, unrelated to my use of the term) of other values. Coolaid then interprets
comparisons to such values containing headers as downcasts. The write-barrier
instruction stands in for the write barrier used by the garbage collector, which is
specific to the garbage collector.

The alloc instruction and the treatment of allocation folding could be replaced
with a more general model however. Many garbage collectors have the mutator allo-
cate memory by bump allocation, wherein the mutator allocates objects contiguously
out of a range (an allocation buffer) of unallocated memory, until the mutator detects
that it cannot fit another object into that range and then obtains another range from
the heap. The mutator essentially splits the range of unallocated memory into a
range to be used for the new object and another range of the remaining unallocated
memory. The original range cannot be reused after being split, else it would be pos-
sible to split the same range twice to produce two objects with the same location in
memory; ranges of unallocated memory are linearly-typed resources [Girard, 1987].
With such restrictions we should be able to replace alloc by the memory-splitting
operation. Implementing allocation folding only requires that both ranges produced
from a splitting operation can be split again, so that the result of one bump allocation
can be subdivided into multiple objects. Baker [1995] curiously also suggests the
use of linear types in constructing objects, but still treats allocation as a primitive
operation. Baker however mentions that objects under construction in his scheme
are not first-class objects, like uninitialised objects in Pulstar, and like unallocated
memory in this memory-splitting model. His model explicitly converts constructed
objects to a non-linear type, whereas Pulstar implicitly treats fully-initialised records
as first-class objects.
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