
Software and Anarchy

Gnuxie Lulamoon and Hayley Patton

Draft of April 17, 2021

This book is dedicated, in respect and admiration,
to the spirit that lives on the computer.

Contents

Introduction . 1
Preface . 1
Beginning a constant analysis 2
The last constant analysis 3
Acknowledgements . 4

1 Liberatory technology 5
Dynamic environments . 7
Always has been malleable . 9
Techniques for building farming devices 13
Who’s doing the computation now? 16
The long run . 18

2 Peer production 21
Non-hierarchical people organisation 22

The Lisp “Curse” redemption arc 22
Community effects . 26

Source materials . 29

3 Applied language 35
Digital feudalism and social capitalism 36

Digital feudalism . 37
Social capitalism . 39

The means of presentation and extension 40
Conclusion . 46

A Cooperative Software License 47

iii

iv

B Bibliography 59

1

Introduction

Preface

This book covers our interpretations of programming as it relates to
social ecology, a philosophical theory that suggests many forms of
dominion have the same causes and methods, and peer production,
a self-organising mode of production, and how their application can
support a radical programmer exceptionally well.

A liberatory technology provides an improvement in the work which
can be done with some amount of effort and time. A community
which utilises such a technology well can perform much more work
independently. We believe a liberatory technology for programmers
takes the form of a dynamic environment, which is a property of some
programming languages and implementations that allows for many
forms of modification and inspection at any time while a program is
running.

We will also investigate the supposed disadvantages of a decen-
tralised development strategy, and how they may instead be used to
the advantage of a community. We also will present why it is desirable
to distribute source materials, especially in software development, and
how shunning distributing source materials as anti-capitalist “praxis”
is nonsensical. Finally, we will discuss what an anti-hierarchical view
of some communication networks can bring to light; especially with
community moderation systems, the property relationships a user con-
jures with their environment, and how to remove as many constraints
on the means of communication and presentation as possible.

We hold the belief that software peer production while rejecting the
potential of dynamic environments is, at best, incoherent, and that a
user of dynamic environments outside peer production may well have
problems applying the environment as much as they could have. We
try to achieve a few aims with this book: to introduce the reader to an
idea of software anarchy, to investigate some common opposition to
it, and to provide a wide selection of resources that a reader (whom
can produce enough free time) can read to help develop their own
approaches.

2

Beginning a constant analysis

Every piece of code you’ve ever written is a lie.
Every day we encounter issues with software, from flaws to bugs

to minute nitpicks. Every day, we imagine how software could change,
so that using it could be easier for everyone. Every day we experience
more and more of the true nature of the software world. Every day we
see that, in this world, things cannot be changed, and so eventually we
learn to no longer imagine. Every day we contribute a million more
lies, a million more arrows to fall back from the sky. Every day we
bring ourselves to accept that this is how it is, how things are. Every
day We say this is how it has to be.

Every piece of code you’ve ever written is a lie. Why? Why do
we say this is how it has to be? Why do we bring ourselves to accept
that this is how it is? Why can’t we just change...

This despair in software production parallels the despair one might
have with the political climate, the world at large. Anarchism is the
process of constantly analysing all hierarchy and actively moving to
dismantle them, and an anarchist framework should be applied to
software. We should constantly analyse software: “Why is this so
complicated?” “Why can’t I just express what’s in my head?” We should
actively move to dismantle complicated software and develop new
ways to express problems and ideas.

One might wonder about the practicality of undertaking such an
analysis, as there are surely are some problems that simply cannot
be solved; some things need to be completely rewritten, and some
things just won’t be extended in some ways. We have sunken so many
resources into non-general solutions and made massive mountains of
code, but it doesn’t have to be this way. Another world is possible,
even if it starts out a small one. We will describe a strategy for es-
tablishing software anarchy, our application of anarchism to software
development.

While it would be inappropriate to claim any ownership or other
significance in presenting these ideas, many of the other radical soft-
ware development projects fall short in their analyses of hierarchies,
relations between programmers, users and other users, and so on, and
are certainly far from “what [we] had in mind”. In contrast, we be-
lieve software anarchy provides a cohesive critique of the current state

3

of software development, “radical” or otherwise, and would be inte-
gral to a praxis that actually liberates its practitioners from hierarchy
established by software and its applications.

The last constant analysis

It appears radical programmers frequently lose their grounding on
what forms of organisation are right or wrong while on the Internet.
We hear one group establish and espouse the direct democracy they
formed, and then go on to write about “the tyranny of the majority”
elsewhere. We read someone cussing out intellectual property, and then
see them express support for a supposedly ethical business model that
promotes more information hiding. It is now common to suggest some
ways of improving online discussion that push for more asymmetry and
hierarchy which would be unthinkable in physical spaces. This kind of
contradiction would only make sense if there was something intrinsic
to online spaces that makes them totally different, but we are headed
to a future where there may be nothing intrinsic to base an excuse on.

We cannot deny that cyber-space and the “real” world (or meat-
space or whatever you want to call it) are becoming one and the
same. Many of our mundane tasks which affect our physical world
and identity are scheduled and performed online, and online spaces
tend to hit barriers which are either the same as, or even worse forms
of, issues that affect physical spaces. It should appear that a view on
how to maintain an online society and a view on how to maintain an
offline society should converge; but the opposite may well be occuring.
For eaxmple, when an egalitarian community has continued to exist,
it is always suggested that squashing the dynamics and independent
experiments in the community, in favour of coercing the participants
to use one set of techniques and produce one set of solutions, in order
to support of a vague notion of coherence. Depending on the social
standing and marketing skills of the person who suggests the solution,
it is sometimes almost taken seriously.

It is also in vogue to lose the control of, and lose abstract reasoning
about a program. One programmer once wrote the words “The era of
dynamic languages is over. There is currently a race to the bottom. . . ”
There is not a bit of resistance or disgust at that observation. Our plane
is losing altitude quickly, and we simply couldn’t give a shit. “Brace for

4

impact. I’m not going to pull on the control wheel. . . ” Such apathy
is better than the average response, sadly. We are pushing ourselves
to imagine how to design programs for smaller and less featureful
machines than most of us will ever be tasked with programming, and
basing our decisions for how to program larger machines on that. The
target for what constitutes a high level language has moved so far that it
is acceptable to have “abstractions” which will somehow get us out of
performing partly-automated static analysis on our programs, because
such itty bitty machines cannot support the runtime features that would
otherwise be used. However, those abstractions cannot meaningfully
be formed, and if they could be formed, they still would put their user
in a worse position.

This form of meaningless and purposeless minimalism allows no
useful work to be performed, and echoes the plan-everything-ahead
design techniques we learnt and scoffed at in school, which we never
saw or used again, because of how useless they were. We accept
having to approximate clairvoyance, in order to micro-optimise a large
system, and to validate the many interactions in them. With these
costs, experimentation cannot possibly be done after the initial design
is made, and the capability to make any progress beyond what has
already been done is a joke. Bob Barton’s infamous observation applies
here: although there will be no priests, will radical programming
become a low cult?

Acknowledgements

We would like to thank Robert Strandh and Selwyn Simsek, among
many #sicl and ##symbolics2 participants, for reviewing earlier
drafts of this book. We are currently sending out some drafts for
proofreading; you can have your name here if you are reading this
draft, and you like having your name in acknowledgement sections.

Please note that this book is licensed under the Cooperative Soft-
ware License (written in Appendix A), and you are given permission
and most welcome to modify and reproduce this book in many ways,
provided that they are not used for profit-seeking in a hierarchical
organisation.

Chapter 1

Liberatory technology

Before we discuss how to support ourselves developing liberatory soft-
ware, we will provide an intuition for what we could produce, which
would be more likely to be liberatory than not. To do this, we will
analyse the model poised by social ecology of a liberatory technology. It
may appear counter-intuitive for technology to have a central part in an
ecological process, but studying how an “appropriate” technology may
exist is crucial to forming an appropriate relation with the ecologies
we reside in.

One of the tenents of social ecology happily coincides with one of
computing: if we can relieve ourselves of mundane, repetitive work,
then we have the time and energy to reflect on what it is we are doing,
and thus figure out what we must do. An evolutionary process must
then lead to more and more self-aware and analytic actors, whom are
better suited to the environment. Furthermore, they have to be able to
adapt to new information and environments adequately, or they will
fail should their original environment fail.

This tenent is reflected in the concept of a liberatory technology.
The reader may or may not have an intuition for what a liberatory
technology could be, so for the avoidance of doubt we will provide a
definition. A liberatory technology is one which is thoroughly decen-
tralised, can be adjusted and modified to fit its users’ applications and
environments, and is integrated in a way that it does not impede on
how its users process things, instead complementing their processes. It

5

6 Chapter 1. Liberatory technology

is also designed to be understandable, usable and modifiable by a small
community, allowing the community to support its use autonomously.

We saw alternative technology as having great potential
for decentralized, humanly scaled applications in the urban
setting, and as lending itself to community control and di-
rectly democratic forms of decision making, thus providing
a material base for the development of a decentralized,
directly democratic society.

Chodorkoff, 2010

A liberatory technology would also facilitate its use for many pur-
poses, and can self-regulate to reduce the duties of its operator. The
users of such a technology could handle much larger projects, while
still benefiting from the domain and local knowledge that they will
have.

The importance of machines with this kind of opera-
tional range can hardly be overestimated. They make it
possible to produce a large variety of products in a sin-
gle plant. A small or moderate-sized community using
multi-purpose machines could satisfy many of its limited
industrial needs without being burdened with underused
industrial facilities. There would be less loss in scrapping
tools and less need for single-purpose plants. The commu-
nity’s economy would be more compact and versatile, more
rounded and self-contained, than anything we find in the
communities of industrially advanced countries.

Bookchin, 1971

This is fundamentally a book about programming, so the reader
should know a computer is very much a multi-purpose machine, and
a computer can self-regulate; one can compute almost anything that
can be computed with a computer, and can do so faster than a human
most of the time. Software on a computer can also protect itself
if something goes wrong, and there are many techniques allowing
software to continue after an exceptional situation. We can imagine
that a computer would most likely appear in the processes a liberated

7

community uses; but a notion of how to liberate the programmer and
the act of programming itself needs to be developed.

There are many ways to convince a computer to compute what
you want it to, with varying qualities and peculiarities that convince
people that some ways of conviction are usually more appropriate
than others. We can reiterate the requirements common to social
ecologists and radical programmers: it should be efficient, it should
be understandable by another reader, the system should be modifiable
by the user, and so on. Programmers often have problems fulfilling
multiple of these requirements, by creating a slow program, or creating
a fast but unreadable program, or producing an easily understood and
performant program, which does not have any facilities for extension
and modification, and so on. Fortunately, this situation is not innate to
programming, and the qualities of a given programming environment
can greatly affect the qualities of one’s program. We believe that
a dynamic environment frequently provides the requisite facilities to
pursue the best approach, and the situations and criteria in which one
does not are gradually decreasing with time.

Dynamic environments

A dynamic environment is roughly characterised by providing the pro-
grammer a way to have a conversation with the computer.1 While
the conversation is not held in English or any other natural language
to humans, it is more like a conversation than the interactions made
with a static environment, in which a programmer provides a compiler
program with source code, which then produces a program that the
programmer can hardly modify after compilation. A programmer can
ask many things, such as what the result of evaluating some code is,
and what the properties of some object are. The computer may reply
with questions, such as how to proceed when an error occurs. This
conversational approach has several advantages: there is much less
latency than when compiling, running and debugging entire programs,

1An analogy that was once punned on by Alan Kay: “I had mentioned to someone
that the prose of then current programming languages was lower than a cocktail party
conversation, and that great progress would have been made if we could even get to the
level of making smalltalk.”

8 Chapter 1. Liberatory technology

a programmer can see their code running and inspect the data it uses
instead of having to imagine both, and a dynamic system can be triv-
ially updated while it is still running,2 which is crucial for programs
that must run for a long time, such as servers and machine controllers.

Traditionally, a program is thought of as describing ob-
jects to be created at run-time. [. . .] But, being a descrip-
tion, the program cannot be directly used to visualize the
objects in a running program; the programmer must make
a visual leap.

Ungar, 1995
When I looked at Java, I thought “my goodness, how

could they possibly [. . .] survive all the changes, mod-
ifications, adaptations and interoperability requirements
without a meta-system?” Without even, for instance, being
able to load new things in while you’re running? So, the
fact that people adopted this as some great hope, is prob-
ably the most distressing to me personally, as I said, since
MS-DOS.

Kay, 1997

Note that designing and implementing a dynamic system may be
more difficult than with a static system; for example, the representation
of a global environment, which functions, variables, classes and so on
reside in, may have to be made explicit, and data structures have to
be made adaptable when class and type definitions change,3 but those
problems only have to be dealt with once by the implementation. The
additional effort required to implement these mechanisms is quickly
restored by the leverage a developer now has over the system, greatly
broadening the range of programs an individual or a small community
can maintain. This form of leverage provided by a liberatory technol-
ogy pushes forward the “limited horizons of achievement” (Mumford,
1964) which would otherwise bind a community to more mundane

2Well, not exactly trivial: in some cases, the programmer has to be careful to not
provide a running program functions that do not immediately work with types already
in the system and vice versa. But this is far better than nothing; The long run compares
the qualities of this mutability with the immutable prior reasoning that is more common
today.

3see update-instance-for-redefined-class in Common Lisp

9

techniques; a user is capable of performing the same task with little
effort, and with the same effort and time, the user can perform much
larger tasks.

This ability may also serve to adapt software to conditions and
aims the original producers did not anticipate; avoiding the assumed
planning that authoritarian technics4 require, where “one must not
merely ask for nothing that the system does not provide, but likewise
agree to take everything offered, [. . .] in the precise [forms] that
the system, rather than the person, requires.” With the larger, but
more specialised and categorised software environments we see today,
adaptability has become an aim of some developers. It is, however, not
feasible to implement or take advantage of, without a dynamic system
to empower the users and developers to perform anything more than
superficial or cosmetic changes to software.

Always has been malleable

A concept of a malleable system has surfaced recently, which like most
things we find ourselves writing about, was quite promising at first. A
malleable system appears oddly similar to a dynamic system, allowing
for arbitrary composition of its components, but is more focused on
having users perform their own composition.

We found that a malleable system can be made of static compo-
nents, and that some proponents of malleable systems assume static
components in a malleable system. This assumption is a form of futur-
ism which “[extends] the present into the future” (Bookchin, 1978),
by establishing a hypothetical future where a malleable system can
be produced, but somehow out of static components. It is scaling a
structure which cannot be reasonably scaled, by vaguely suggesting
how to adjust the relationship of its components; a kind of “technique”
rightfully feared by programmers and social ecologists alike:

Now, somebody could come along and look at a dog
house and say, “Wow! If we could just expand that by a

4Note that Mumford uses the term democratic technics, which is a precursor of sorts
to the liberatory technology of social ecology; and places an authoritarian technics in
contrast to it.

10 Chapter 1. Liberatory technology

factor of a hundred we could make ourselves a cathedral.”
It’s about three feet high. That would give us something
thirty stories high, and that would be really impressive. We
could get a lot of people in there. [. . .] [However,] when
you blow something up [by] a factor of a hundred, it gets a
factor of hundred weaker in its ability, and in fact, [. . .] it
would just collapse into a pile of rubble.

Kay, 1997
Futurism is the present as it exists today, projected, one

hundred years from now. That’s what futurism is. If you
have a population of X billions of people, how are you
going to have food, how are you going to do this. . . nothing
has changed. All they do is they make everything either
bigger, or they change the size – you’ll live in thirty story
buildings, you’ll live in sixty-story buildings. Frank Lloyd
Wright was going to build an office building that was one
mile high. That was futurism.

Bookchin, 1978

A static malleable system attempts to scale a system that cannot be
scaled; programs in static languages and static environments would be
hopeless5 at using objects and types they have not been programmed
to use (without mangling them, perhaps by serializing objects, which
would violate the notion of both an object and a type). We have
already argued that a static system is harder to develop with, but such
a malleable system made of static components would have significant
drawbacks that would limit its malleability.

Some forms of adaptors would be used in a malleable system with
static components; including a dynamic linker, used to swap the static
components that are in use within the system, and a embedded inter-

5There was an argument about if dynamic type systems were any better at handling
objects we don’t know how to handle. At the implementation level, most optimisations
that can only be done in static systems are some forms of inlining, possibly monomor-
phizing the generated code, so that it will be much more efficient with memory layouts
it knows, at the cost of not being able to manipulate new types easily. At the language
level, we would like for different protocols which “do the same thing” to cooperate, but
this is not even possible in the structural type systems that were advocated for by static
type proponents, where types are sets of applicable functions. So, yes, static languages
and their implementations are hopeless.

11

preter for a dynamic language can be bundled with a static system to
provide glue code between static components. The language is also
typically used to provide the extension mechanism intended to be used
by a user. One example of a successful malleable system, as mentioned
in the Malleable System catalogue,6 is ole GNU Emacs, which we have
happily used to type up this book. But working with its internals is
not an enjoyable task; the XEmacs developers knew this well, and
attributed it to the non-abstract representation of many Emacs objects:

We want our implementation of keymaps to be used:
we want them to be an abstract data type, not something
like “if the third element of the alist is a cons whose car is a
vector of length 7, then it represents an aliased indirection
into the sixth element of the alist...”

Zawinski, 2000

How could this be a problem with a static malleable system? Emacs
isn’t entirely written in Emacs Lisp, and there is a C core that does
a lot of important stuff for it. Interfaces between the two languages,
one bytecode-interpreted dynamic language, and one compiled static
language, are likely to be difficult to work with, and effectively lead a
programmer to use strange representations that only make the interface
easier to implement.

The rest of implementing such an interface is also not easy:

But basically, either you break the modularity so that
you know what the module does with your objects and you
have a maintenance nightmare, or you copy objects, use
smart pointers, or use reference counting and you have a
slow application.

Robert Strandh on #lisp

Implementing an interface between static and dynamic components
doesn’t appear like it gets easier – never mind interfacing static compo-
nents with other static components.

Another extension of this issue is that developers cannot always
foresee the ways in which their programs could be extended; the GNU

6https://malleable.systems/catalog/

https://malleable.systems/catalog/

12 Chapter 1. Liberatory technology

Emacs developers did not expect a client to introduce new “primitive”7

types, or they did not immediately see why that would be useful.
As such, static systems cannot foster a complete “read-write culture”

(as introduced in Chapter 2) which would be fundamental to malleable
systems. In an attempt to facilitate this culture, the developers of a
static system use adaptors, which are constrained to the capabilities of
the components that provide their implementation. If a user needs to
make changes to a static component that is used by the implementation
of fundamental components of the system, they cannot use an adaptor
to do so – they must have the knowledge that was used to create the
system in order to change it, and so a user could not use the embedded
programming environment bundled in a static system to modify these
components. They would effectively have to become a developer of
the system, by retrieving the source code of system, modifying it, and
then rebuilding. This would violate read-write culture, as this is not
something that can be expected of a user. We can also argue that this
alone makes modification of static systems inherently inaccessible to
those who need to program from another environment.

Proponents of malleable suggest that relinking and subclassing can
be used to provide extensions to a static system, however there are
many extensions that would in fact require direct patching in order
to work. An example of modification that the programmer did not
imagine before appears around 8:25 into Dan Ingalls’s demonstration
of an old Smalltalk system (Ingalls, 2017), in which Ingalls modifies
the way text selection is visualised, by replacing a method in the class
that handles drawing the selection. If Ingalls was using a static system,
subclassing this class and re-implementing the method there would not
update programs itself; programs would also have to be updated to use
this new class. While it is entirely possible to provide a better styling
mechanism, allowing the user to describe how graphical objects should
be rendered (as many desktop environments do today), the general
solution appears long after the problem and a specific solution do, and
the user can only wait for the developer to patch their components

7In many Lisp systems, it is possible to define composite data types that are distinct
from any in-built data types; Common Lisp provides defstruct and defclass to do so.
Emacs Lisp is very unique compared to other Lisp systems, and not just with data
representation.

13

should they not be able to modify the components; Ingalls was able to
replace the method almost immediately.

A dynamic system makes it very possible for the user to inspect
and modify the underlying system from any accessible environment.
Additional problems that arise in making malleable systems simply do
not exist in truly dynamic systems, as much of the host system can
be reused in implementing the extension system. In many dynamic
languages, it is possible to generate code at runtime, and introduce
new bindings for functions, values, classes and so on, allowing a user to
modify the program without the programmer having to specially allow
them to. A domain specific language, should one be used,8 can be com-
piled to the dynamic language, used interchangeably with components
written directly in it, and use the provided, fast implementation of the
language, as opposed to rolling an interpreter that is strictly slower
than the host, and creating half a dynamic system to host the malleable
system.

An entirely dynamic system such as a Smalltalk or Lisp machine
obviates even more problems, including that of communicating (with
serialisation and deserialisation of) complex objects between processes.
Future systems such as CLOSOS (Strandh, 2013) will even eliminate
sterilising objects to disk, as object storage will be persistent. As many
issues with malleable systems are reduced with techniques performed
by dynamic systems, we are well convinced a successful malleable
system must be dynamic.

In case the utility of a dynamic system is still not apparent, we will
try to contextualise the features of a dynamic system in a short “story”,
in which their utility should be evident.

Techniques for building farming devices

Fred Armstrong is bored of farming, and wants to work on the tele-
phone system of his town. However, he is somewhat too protective of
his carrot farm and won’t give control of it to someone else to maintain
instead.

8Though we would be surprised if said language wasn’t used already to write parts of
the program!

14 Chapter 1. Liberatory technology

Earlier, he had heard with a program a colleague told him about,
which uses an expert system and readings from digital sensors and
meters to create a to-do list of what should be done before he leaves to
work with his new hobby. This would relieve him of, say, checking with
the meteorologist if he did in fact hear rain while sleeping, as it would
check the soil moisture (which is probably more accurate, anyway), or
pull the weather records by itself. However, he had expressed concerns
that he wouldn’t be able to tell how the program had made its decisions,
but his colleague said it would also explain how it came to a conclusion
with a clear and logical description of its “thought process” in natural
language.

Convinced that the program could help reduce the time he has to
work on his farm, Fred downloads it on his laptop, and plays around
with its simulation mode, allowing him to model various situations and
observe how the system reacts, and inspect the rules it uses to decide
what to do. He tries modelling the flood of the April of 2060, which
he still recalls, having prompted him to work on a way of elevating
the crops above water. Well, it wouldn’t be too hard to spot a flood,
but if it breaks somehow, it would probably break then. And it did not,
so Fred is satisfied and calls up the local engineer for help integrating
some sensors he found in a shed with the system.

Henry Babin, the local engineer, arrives at Fred’s house the next
day, and sits with him on the verandah as they discuss the system Fred
wants to set up. Fred passes him one of the sensors, and Henry is
visibly shocked by how old it looks. It sitting in a dusty shed did not
help make it look new, but the technique it used to detect moisture
and the concentration of some chemicals which are important for plant
growth dated it to the mid 2020s at least. Nonetheless, he believed
he could use it, as it would still function as well as newer sensors – it
was just made with questionably sourced materials by a questionably
compensated assembler.

Henry connects the sensor to his computer, and retrieves the data
sheet for the sensor, and the manual for the farming program. As
well as a comprehensive description of the user-facing portion of the
program, the manual contains instructions for how to interface new
hardware with the expert system, cross-referencing the protocol classes
and methods that the system requires, in order to read measurements
off the sensors.

15

After the manual agreed with him that he had correctly imple-
mented as much as could be tested without performing a test with
the sensor, Henry connects a sensor that he knew to be accurate and
already supported by the system, and plants them both in his garden.
He then starts a program that the manual provided in order to check if
the values read were correct, but the concentrations plotted appear to
be about a magnitude too low.

Henry grumbles at the computer, and remembers, much like Fred’s
program, his programming environment has a mode where it tracks
how values came to be in his program.9 He uses the inspector of
his programming environment to find that his interface produced the
values by scaling the raw values read to the limits of the sensor. . . of
which he had entered the maximum concentration with one too many
zeroes. As soon as Henry replaces the maximum concentration he had
provided, the values of the old sensor shoot back up to those of the
new sensor, and Henry is satisfied with his efforts for the afternoon,
and goes to take a nap before returning to Fred’s house with the sensor
and working program.

Henry visits Fred again, returns his sensor and installs the updated
program on Fred’s laptop. Fred installs the sensors, and the pair
proceed to drink tea, as the program has to take a few samples before
producing its first report. The program states that the soil is too dry,
so it must be watered, but looking up at the dark clouds suggests very
clearly that it is going to rain soon. Henry offers to modify the program
to consider the weather forecast for the day, but Fred, eager to show
off what he learned by messing with the simulation, connects a forecast
source from the server of the meteorologist, and enters a rule to put
off watering if it is early into the day, and it is likely to rain; partly
imitating the rule that estimates soil moisture from rainfall records
which he observed in the simulator. Henry barely holds in a giggle,
thinking that Fred is fumbling around with the program, but is pleased
to see him pick up rule programming so quickly.

9This is something like a time travelling debugger, which records how a program is
executed, so that the user can step through it at their own pace after execution. We
suppose, for simple functional expressions, we could just present the function calls made.

16 Chapter 1. Liberatory technology

Who’s doing the computation now?

Unfortunately, static systems still exist, and even more unfortunately,
they may well be on the rise again. Dynamic optimisations and com-
pilers have been applied to languages such as Lisp, APL, Smalltalk
and Self, Java, Julia and so on for almost fifty years, and high level
languages can frequently perform faster than static languages in sym-
bolic processing.10 But that is not a factor that could fit into the
world view of a programmer fooled by Ousterhout’s fallacy, the false
dichotomy between “scripting” languages (which are interpreted and
have sub-optimal data representations) and “system” languages (which
are compiled and have optimal data representations), who could not
believe that a dynamic environment can be just as fast and provide
guarantees like a static environment. Thus the solution must be to pro-
duce static systems with better guarantees, and work around problems
(such as memory safety) that simply do not exist in dynamic languages,
and not having the benefits of late binding, introspection and so on.

We had previously written an essay about static environments,
entitled Masochist programming (Patton, 2019). This odd description
of a programmer that advocates for static environments relates to
how they appear to want more work to do, and to have a much more
“painful” experience programming. We wanted to know what excuses
does one have for bonding themselves to a static environment? So
you can write code for microcontrollers? Like that web server we heard
of that falls over with 2,000 connections (which was called a denial of
service to save face), which is clearly going to run on a microcontroller
soon? To make micro-optimisations to drop levels of indirection that
access to a compiler could do for you, and then optimise out some
more? Is it more “real time” (whatever that means to you)? Are you
now free from watching your consing and control flow to produce
consistent execution times? And you’re designing for sub-millisecond
latency? All of the above? Most people we ask are really doing none.

While we’re here: expressing concerns about the safety of C and
C++ programs has not and is not limited to proponents of other “sys-

10One example is solving the n-queens problem in OCaml, a functional high level
language, and in C++, an imperative low level language. The C++ program ran up
to about 10× slower than the OCaml program: http://flyingfrogblog.blogspot.co.uk/
2011/01/boosts-sharedptr-up-to-10-slower-than.html

https://web.archive.org/web/20180216150158/http://flyingfrogblog.blogspot.co.uk/2011/01/boosts-sharedptr-up-to-10-slower-than.html
https://web.archive.org/web/20180216150158/http://flyingfrogblog.blogspot.co.uk/2011/01/boosts-sharedptr-up-to-10-slower-than.html

17

tems” languages,11 contrary to popular belief. For example, the iconic
Scheme textbook Structure and Interpretation of Computer Programs
makes note of the unsafe-by-default code C and C++ compilers gener-
ate:

Compilers for popular languages, such as C and C++,
put hardly any error-checking operations into running code,
so as to make things run as fast as possible. As a result,
it falls to programmers to explicitly provide error check-
ing. Unfortunately, people often neglect to do this, even in
critical applications where speed is not a constraint. Their
programs lead fast and dangerous lives. For example, the
notorious “Worm” that paralyzed the Internet in 1988 ex-
ploited the Unix operating system’s failure to check whether
the input buffer has overflowed in the finger daemon.

Abelson and Sussman, 1996

This “radical” desire of more toil reminds us of old Soviet propa-
ganda posters; the kind where some proles are farming, metalworking,
loading guns, that kind of thing, with some motivational caption that
we can’t read. In that time in Russia, industrialisation was highly
sought out, in an “age burdened by scarcity, when the achievement of
socialism entailed sacrifices and a transition period to an economy of
material abundance” (Bookchin, 1971) and working to advance the
industry as such was a noble thing to do with one’s time. That was, of
course, ninety or so years ago, and now with the possibility to greatly
reduce toil, and capitalists already ordering production greater than
what can be consumed (and then to burn off the surplus), it would
be absurd to tell people to work more. Apparently not so for static
programming environments!

11We don’t really think systems languages exist; as previously mentioned, machines
that had operating systems written in Lisp and Smalltalk had some success, and were
more advanced than Unix at the time; the Unix-Haters Handbook (Garfinkel et al., 1994)
provides some commentary from users of those machines who were forced to migrate to
Unix systems.

18 Chapter 1. Liberatory technology

The long run

But efficiency isn’t the only desire of a static programmer; many propo-
nents suggest that they are able to verify their behaviour at compile-
time (summarised in the mantra “if it compiles, it works”). Dynamic
systems are usually designed to facilitate working with moving targets,
so verification may not be desirable for many users, who could not
produce a specification that could be verified before it is changed.

Market pressure encourages the development and de-
ployment of systems with large numbers of complex fea-
tures. Often systems are deployed before the interaction
between such features is well understood. During the life-
time of a system, the feature set will probably be changed
and extended in many ways.

Armstrong, 2003

Some systems even assume the opposite is inevitable, that there
are errors in user programs, and attempt to behave correctly in the
presence of software errors. Such systems may also have advantages
for handling hardware (and other external) errors, as those are just
another type of failure that the system can accommodate for. A dynamic
approach is better suited for maintaining long-running processes that
undergo changes, yet by the superficial appeal of being able to “prove”
behaviour, and delivering the possibly false belief that one is safe
from programming errors, it is mostly non-present in mainstream
programming.

(There are some cases where a dynamic environment simply couldn’t
work, such as deploying programs for constrained machines like mi-
crocontrollers and unmodifiable programs such as smart contracts, but
again the times an average programmer works with those are probably
very overstated. However, many theorem prover programs today, such
as Coq and ACL2, are very interactive, yet produce arguably the most
static things programmers make. It would not be hard to assume that
making testing environments more interactive would allow for greater
confidence in the correctness of a project in less time.)

But with C++ and Java, the dynamic thinking fostered
by object-oriented languages was nearly fatally assaulted

19

by the theology of static thinking inherited from our mathe-
matical heritage and the assumptions built into our views
of computing by Charles Babbage whose factory-building
worldview was dominated by omniscience and omnipo-
tence.

And as a result we find that object-oriented languages
have succumbed to static thinkers who worship perfect
planning over runtime adaptability, early decisions over
late ones, and the wisdom of compilers over the cleverness
of failure detection and repair.

Gabriel, 2002

The languages which may be considered dynamic or object-oriented
today, like Python and Java, are in effect the worst of both worlds:
unable to be adapted and migrated to new specifications like classic
dynamic systems, and unable to be analysed and statically proven like
static systems.

The trend towards static monoliths with dubious claims to “effi-
ciency” and “correctness” should be terrifying; prototyping and experi-
mentation, which may become the means by which people adapt and
integrate technics and our software into their contexts and use-cases,
are going to become much harder by producing increasingly more static
structures. The conversational and malleable aspects of dynamic sys-
tems make them almost always ideal in reducing toil for programmers,
and a free society that requires programming certainly should educate
and support its programmers in using such systems. Overstating the
cases in which this is not the case is comparable to overstating the
minimum toil a free society would need to support itself.

20 Chapter 1. Liberatory technology

Chapter 2

Peer production

Peer production could be described as “coincidental” organisation,
where individuals organise to achieve a common goal, with no formali-
ties and usually no other reasons to associate. This mode of production
has appeared with the proliferation of the Internet, as it makes collabo-
ration between strangers with common interests quite possible. It can
be said that peer production maximises the agency of an individual
producer, while promoting a free flow of information. Such a flow
of information is arguably harder to prevent than allow in modern
society, especially with programs and their source code; there are many
websites that a developer can upload source code to, and be provided
with issue and patch submission tracking at the very least. A hobbyist
is very likely to release their source code by default when presented
with these facilities.

Infrastructure for hosting source materials is crucial to facilitating
peer production, but it is not the only crucial component. (Kleiner,
2010) goes very far into how to provide financial and material support
for producers, proposing a venture commune to decentrally manage
materials. We would only reiterate the points and strategies presented
in the manifesto, so we will not discuss it further in this book. Instead,
we will discuss how to organise communities to engage in peer produc-
tion, while preserving their decentral nature, without extinguishing but
rather utilising the plurality and dissensus of a decentral community.

21

22 Chapter 2. Peer production

Non-hierarchical people organisation

Static forms of organisation may hinder the creative and innovative
processes of their participants. Binding ourselves to projects and indi-
vidual manifestations of our line of thought is not sustainable, as we
find ourselves frustrated with what we cannot change, and what we
should have done, as we progress.

If we use our creative power for ourselves, it destroys
us. If we sacrifice ourselves in order to serve the creative
power, then it creates us.

Bennett, 2009

It is also difficult to find resources and funding when one is inves-
tigating very new ideas, without a benefactor (such as a multi-billion
dollar printer company, or a government or military contract) that
trusts one to find something interesting, or has enough resources to
throw at anyone.

True innovation also involves questioning the assump-
tions that almost everyone agrees with. This can sometimes
make those of us engaged in research feel a bit like thought
criminals. [. . .] Of course, no one is going to send inquisi-
tors to our homes to persecute us for disagreeing with the
mainstream. However, you can run out of funding very fast.

Bracha, 2013

By organising a group around the development of a project, the
participants may deny themselves the potential of producing a new
project that better supports their ideas. Peer production may allow its
participants to diverge and follow their lines of thought more gracefully
than a rigid collective or cooperative form; it is likely, should one find
themselves traversing a new idea, that the people that one wants
to collaborate with are outside a collective, and so at that point the
collective is more or less reduced to an accounting service.

The Lisp “Curse” redemption arc

When a developer has introspective tools and some time to poke around,
they are in a very good position to analyse difficult codebases, which

23

are particularly large or are written in a way that is unnatural to the
reader. However, the supposed secondary and tertiary effects of pro-
viding a programmer with sufficient power over their programming
environment may be significant enough to deter cooperation according
to an essay titled “The Lisp Curse”,1 which is frequently used as an
excuse to avoid confrontation over social issues affecting the Common
Lisp community.2 The main points made are that technical issues in
sufficiently powerful languages and environments become social issues,
and that having such power reduces some natural cooperative force
between programmers, causing them to part ways easily and thus not
achieve anything significant without external discipline. This would
spell disaster for our peer production model, if it weren’t that the cen-
tralised models put in contrast to a dynamic-decentralised development
model can only be worse at producing stagnation and removing agency
from the user; which would greatly slow any experimentation and the
progress of the community. In short, the apparent incoherence of peer
production should be embraced instead of lamented, as we may stand
to learn a lot from incomplete prototypes when trying to produce some
sort of grand unified product.

There are two apparent “solutions” that avoid this curse that we
will explore. The first solution is to add the extension to the system
via the implementation, forcing the community to adopt this extension,
removing the agency of the user and setting them up to be screwed
if the solution becomes a problem. The second is to ensure that any
task is too large to tackle without cooperation, by reducing the power
and efficiency of each individual user, and in doing so, eliminating all
facilities for the individual creative process.

Neither solution is particularly appealing. If the provided extension
has flaws that require it to be replaced, fixing the problem will affect
many more clients, as opposed to if the client had more options. For
example, JavaScript used to use a callback system (which is really
a form of continuation-passing style) for interfacing with the outside
world. Writing in a continuation-passing style manually was regarded
by some as difficult to read and write,3 so a promise-based system and

1http://www.winestockwebdesign.com/Essays/Lisp_Curse.html
2It has been suggested many times that one could substitute the name Lisp for some

other name, like JavaScript or Python, and most of the article wouldn’t look too wrong.
3Having too many callbacks in one function is often called callback hell.

http://www.winestockwebdesign.com/Essays/Lisp_Curse.html

24 Chapter 2. Peer production

some syntactic sugar (async and await) were introduced to make using
it look like normal, synchronous code. Fortunately, promises are still
compatible with continuation-passing style code, so it did not require
any code to be replaced, but it still cuts a program into blocking and
non-blocking parts.

You still can’t use them with exception handling or other
control flow statements. You still can’t call a function that
returns a future from synchronous code.

You’ve still divided your entire world into asynchronous
and synchronous halves and all of the misery that entails.
So, even if your language features promises or futures, its
face looks an awful lot like the one on my strawman.

Nystrom, 2015

Features such as asynchronous programming are very difficult to
handle without getting it right the first time. The way to go forward
while how to implement features is being debated is to provide a
construct that subsumes it, such as providing access to implicit continu-
ations like Scheme or using another unique combination of syntax and
constructs that provide something like continuations, such as monads
and the do-notation present in Haskell and F#, allowing a programmer
to wire the continuations into their asynchronous backend; or by pro-
viding many green threads, such as in Erlang, and have the backend
unblock the green threads when they are ready to continue. The lat-
ter two techniques facilitate composing various implementations, as
they implement a common protocol which allows them to compose
easily, where both implementations can be used in the same project if
necessary. Thus, we are in a much safer position with more power to
reproduce special language constructs if they become problematic, and
then to unify and compose multiple implementations, allowing partici-
pants to work without a consensus. Kay (1997) succinctly states this
view as “the more the language can see its own structures, the more
liberated you can be from the tyranny of a single implementation.”

Disempowering an individual discourages experimentation, whether
it be in attempting to implement a new concept, or modifying exist-
ing code to improve it. If the goal is to develop new concepts, then
having many partial implementations is better than one complete im-
plementation; as they reflect on different views of the concept. (An

25

implementation is never really complete, and a concept is never really
finished, anyway.) One complete implementation is prone to be wrong,
and a linear progression of products provides less information to work
with, compared to many experiments. If the goal is to produce stable
software, knowledge of such experiments and prior work is very useful.
Kay had frequently called various tenents of programming a “pop cul-
ture”, where participants have no knowledge of their history. Without
such experiments, we have no history to investigate, even in the near
future. It would thus be ideal to experiment as much as possible, and
use the lessons learnt to produce a comprehensive theory and then a
comprehensive implementation; and such software may not require
replacement as immediately as if it were developed in a centralised or
linear manner.

Disempowering a community has negative effects for creating one
“unified” product, too. While inducing difficulty to go ahead with any
decision that isn’t unanimous leads to a consensus, it is an entirely
arbitrary consensus, which can be as terrible as it can be good. The
resulting structure may be good at giving orders and techniques to its
participants, but “although everyone marches in step, the orders are
usually wrong, especially when events begin to move rapidly and take
unexpected turns.” (Bookchin, 1971) Suppose a sufficiently large group
of scientists, say all the physicists in Europe, were all told to perform
the same experiment with the same hypothesis, the administration
in charge would be laughed at, as it would be hugely redundant and
inefficient to investigate only one problem and one hypothesis with
as many physicists. However, such a situation is presented as an ideal
for software design, when groups pursuing their own hypotheses and
theories are considered “uncoordinated”, or called “lone wolves”.4

Disempowerment also precludes the group from attempting another
strategy, without another unanimous decision on which to attempt.

The most viable option is to go forward with multiple experiments,
and provide participants with more power, so they may late bind and
ignore the “social problems” produced by the diverse environment, in

4“But what about producing a baseline implementation that is usually acceptable
in any case?” Such a library is only really determined after more analysis, and what
constitutes the baseline is often what is required for the baseline for some other concept,
which leads to an unpredictable situation. As we will soon discuss, a baseline is usually
decided upon anyway.

26 Chapter 2. Peer production

turn provided by having reasonable control over the environment. Mea-
suring progress by the usage and completion of one implementation of
a concept is an inherently useless measure; it would not consider the
progress made in another implementation or design. Such a measure
“subjects people to itself” (Stirner, 1845) and inhibits their creative
processes. “You’re imagining big things and painting for yourself [. . .]
a haunted realm to which you are called, an ideal that beckons to you.
You have a fixed idea!” Progress on producing should be measured
in how much of the design space has (or can be easily) traversed, as
opposed to the completion of one product; a poor design choice could
entail a final product being unfit for its purpose, but a failed proto-
type is always useful for further designs to avoid. With that metric,
a decentral development model is greatly surperior to a centralised
model.

Community effects

Peer production can better support decentralised development that
doesn’t come upon a consensus for whatever reason. This is a natural
effect of developing sufficiently broad concepts and concepts which
the theory of is frequently changing; where there are many ways to
implement the concept which are not always better or worse than one
another. Examples of this theme are hash tables and pattern matching,
for which there are many implementations with varying performance
characteristics, and for which research appears to generate a new
technique or optimisation every few years.

Empirically, the Common Lisp community has not delivered on
the prediction the author made, of many mutually incomprehensible
incomplete implementations of any new concept. Pattern matching,
again, was a concept that the author of the article believed would
be implemented many times when functional programming becomes
further put into the mainstream. Functional programming did indeed
become fairly mainstream,5 and since then, there has been one pattern
matching library widely used. In fact, the number of common pattern
matching libraries has been reduced, with Optima being deprecated

5Of course, the reader – pardon me – Real Hackers should be aware that functional
techniques are not necessarily a replacement for object-oriented techniques, and thus
can’t be compared or “moved on from” to another.

27

in favour of the now common Trivia, which uses a newer compilation
technique. Furthermore, there have also only been one popular lazy
evaluation library (CLAZY), and one static type system implementation
(Coalton). So, empirically, there has not been an explosion of poor
attempts at any functional programming libraries; or we have not heard
of them.

We may not have heard of any other of these genres of libraries prior
to writing this book due to network effects, which filter out many bad
libraries when there are many options; with no disposition otherwise,
one is most likely to follow the design choices that appear popular. For
example, there are many testing frameworks in Common Lisp (and it
has become a joke to write another framework), but we can count most
of the frameworks mentioned publicly per week on one hand. This has
a sort of smoothing effect, where there are a small number of usually-
good choices that are frequently recommended, greatly reducing the
perceived entropy of the environment.6

A culture that encourages experimentation, but allows the commu-
nity to settle on usually-good defaults, can remain cooperative and
cohesive without risk of stagnation; the many forms of communication
which do not require formal arrangements, and the rapid network
effects produced by online communication can support both qualities.
The community should also be aware of duplication of code when its
prototypes converge, and make a goal of reducing such duplication
and improving code quality; which is hard to “sell” as code quality is
hard to quantify and concisely describe, but is of course necessary to
support further development.

Since execution performance is readily quantified, it is
most often measured and optimized–even when increased
performance is of marginal value [. . .] Quality and reliabil-
ity of software is much more difficult to measure7 and is

6However, this can also lead to shared misery, where users recommend what they have
always used, even if they know there is a better alternative: http://metamodular.com/
Psychology/shared-misery.html
Again, when it is difficult to change one’s decision, and one is now dependent on external
factors, it may become very unfortunate that clustering occurs. For example, Fediverse
server usage can be seen to follow Zipf ’s law, where few servers support many users:
https://social.coop/@Stoori/100542845444542605

7There are now some misleading metrics, such as the “nine nines” of uptime that an
Erlang-based telephony system achieved with 14 machines, and the code quality badges

http://metamodular.com/Psychology/shared-misery.html
http://metamodular.com/Psychology/shared-misery.html
https://social.coop/@Stoori/100542845444542605

28 Chapter 2. Peer production

therefore rarely optimized. It is human nature to “look for
one’s keys under the street-lamp, because that is where the
light is brightest.”

It should be a high priority among computer scientists
to provide models and methods for quantifying the quality
and reliability of software, so that these can be optimized
by engineers, as well as performance.

Baker, 1991

Beyond our commentary on development models, there are some
other issues with the article that should be pointed out. The fatalism
of the article is self-fulfilling, which is not helpful for attempting to
rid Lisp of its “curse”. If one takes the advice and avoids powerful
languages and environments, then they will appear unpopular and its
espousers can use it as evidence for their babbling, with a statement
like “Look, no one uses Lisp still! The Lisp Curse was right!” Assuming
this development model is a problem, is the aim to actually relieve
the community of this issue, or is it to badmouth the community? It
also supposes that the goals then, such as Lisp machines and operating
systems, are the goals now. As suggested near the end of Always
has been “malleable”, we do want a Lisp operating system, but the
special machines are less necessary with clever compilation strategies
today; but more importantly, this metric conveniently ignores that the
choices in “normal” operating systems almost collapsed to Windows
or some Unix, equally universally affecting other vendors, regardless
of technology choices; instead opting to implicitly put the blame on
Lisp users for the loss of diversity of operating systems. The foreword
to (Garfinkel et al., 1994) also names TOPS-20, the Incompatible Time
System and Cedar as victims of this collapse, which were not written in
Lisp or a dynamic language, but were still disposed of around the same
time.

In this sense, The Lisp “Curse” is only real because we make it
real. We set up metrics and constraints that promote conformist and
centralist development strategies, then pat ourselves on the back for

that frequently appear on open source project documentation. The former is a product
of fault-tolerant hardware design as much as it is fault-tolerant software design, and the
latter won’t tell off the programmer for larger design problems, say, using a poor choice
of data structures.

29

having made it impossible for anyone to test new ideas on their own.
These sorts of metrics and organisational methods “treat [. . .] all twists
and turns in the process of theorizing as more or less equivalently
suspect, equivalently random flights of fancy,” (Gillis, 2015) which
have no real purpose. It would be interesting to see if consciously
attempting to avoid this centralism would produce better quality soft-
ware; allowing developers to go off on any interesting tangent, and
breaking the illusion that there is one way to achieve the aim. This
state should not pose any issues with sufficient communication; even
if it does not appear very coordinated, or the group of diverging pro-
grammers appears uncooperative, they are much more likely to find
the right approach and base for their product. The environment can
also be made more condusive to finding new approaches, by opening
communication channels, and publishing the source materials required
to implement a product.

Source materials

There is a concept of a read-write culture, also known as remix culture,
where “consumers” of some product also modify and reproduce the
product, making them also producers. Kleiner (2010) provides a
critique of the “Creative Anti-Commons”, explaining that the Creative
Commons provide many options to enforce intellectual property and
impede on derivative works, while its author suggests it would support
such a culture.

It is assumed that, as an author-producer, everything
you make and everything you say is your property. The right
of the consumer is not mentioned, nor is the distinction
between producers and consumers of culture disputed.

Such a read-write culture is fundamentally impossible without shar-
ing source materials. These source materials may consist of source code,
building instructions, original media, and so on. The transformations
that one can make on many products without sources are very lim-
ited and of very low quality. For example, remixing a song is really
only achievable by adding post-processing to the the mastered audio,
such as cutting the audio and adding effects, which is difficult to get

30 Chapter 2. Peer production

Figure 2.1: Many digital products are produced in complex ways, in
which the source materials are almost impossible to recover.

right, and imprecise editing can confuse the listener. Modifying the
behaviour a program with only its executable binary is basically impos-
sible, and a consumer of those examples is likely to want to do both.
To achieve that, the consumer would need to have the appropriate
source materials. The breadth of what can be required is illustrated in
Figure 2.1.

This read-write culture is also crucial for anarchist software:
our previously mentioned liberatory technology would only become
stale and unusable, without constant adaptation and reciprocation of
information regarding it. When our friend Jaidyn Levesque found that
the Peer Production License did not have protections for preserving

31

Figure 2.2: A “family tree” of some licenses considered to be ethical
and/or cooperative.

source materials, she modified the license to add them, producing a
Cooperative Software License that had source protections like the Affero
General Public License, while keeping the anti-capitalist stipulations in
the Peer Production License; which may better facilitate a read-write
culture.

Ethical licenses, such as the Non-Violent Public License (based on the
Cooperative Software License), potentially provide another option for
developers who are concerned that their products may be used for very
bad things, instead of living with the possibility, or avoiding developing
what they want. These ambiguous situations come up more frequently
than one might think; frequently when a product appears politically
inert, but is used in a larger context, which can be very polarized. For
example, a database may be used to track the finances and resources
of a collective, or it may be used to comb through data collected from
mass surveillance. A developer can now begin to distinguish between
the uses they believe are moral, and the uses they believe are immoral,
with such a license. While such licenses have always existed, recent
observations of problems in free software culture have encouraged the
creation of newer ethical and cooperative licenses; some of which are
shown in Figure 2.2.

An interesting question is, assuming that these licenses can be
upheld in a court (which is not even clear for the GNU General Public
License, a relatively more permissive license), are there any actors that

32 Chapter 2. Peer production

can violate them anyway? It is unlikely states are going to be held
properly accountable for violent acts they commit soon, and more
unlikely that license violations will be part of hearings on such acts,
but there is not much one could do to prevent some actors from using
your products other than to not produce them. A similar thing can
be said for sufficiently large corporations which no court would want
to try to control. Reasoning like this is often used to avoid these
licenses, and we cannot deny that it is entirely possible that they could
be worked around; but these licenses can still serve as deterrents
to malicious adoption. For example, Google has banned use of any
software licensed under the Affero General Public License,8 as the
“virality” of the license could require them to release sources for their
internal code, which would threaten their proprietary surveillance
model. This threat has been a crucial tactic for keeping copyleft code
out of proprietary products for years, and we can adopt these tactics,
but with a better sensibility for what software freedom may be.

Another view on copyleft licenses is that they may implicitly thr-
eaten state violence. For example, the Centre for a Stateless Society,
a publisher and think-tank for left-wing market anarchism, explicitly
shuns both intellectual property and copyleft licensing.9 However, the
alternative (of legally permitting such uses) may, again, lead to state
and corporate violence. It may be difficult to avoid using the threat of
the state to reduce the possible violent acts done; but the immediate
threat of viral licensing deters many actors without having to do much
oneself. (Using state violence to possibly prohibit itself is at least very
amusing to some users of such licenses.)

Ethical and cooperative licenses have had some success in the last
five or so years, as they provide a very practical way to allow a program-
mer to effectively “practise what they preach”. However, this idea was
not understood by the authors of a so-called “Anti-Capitalist Software
License” who appear to only care for the survival of a programming firm
as anti-capitalism, and not any form of cooperation or collaboration,
and put out statements such as:

8“Code licensed under the GNU Affero General Public License (AGPL) MUST NOT be
used at Google.” https://opensource.google/docs/using/agpl-policy/

9“C4SS loathes intellectual property and finds copyleft licenses troubling in their
implicit threat of state violence.” https://c4ss.org/about

https://opensource.google/docs/using/agpl-policy/
https://c4ss.org/about

33

ACSL recognizes that the copyleft requirement of open
source can be a drain on limited resources, can expose
sensitive or secure information, and can put software at
risk of theft.

The availability of source code is less important than
the organization of software labor.

https://anticapitalist.software/

The former contradicts all three of basic anti-capitalist, peer pro-
duction and software development theories: code itself should not
be “sensitive information” that can be used to harm itself – security
by obscurity is widely acknowledged as a generally bad idea, and we
should not need to elaborate on what may happen when making that
assumption. Publishing and reusing free source code is an excellent
way to get more resources,10 and the existence of “theft” implies sup-
port of private property and that the author somehow did not consent
to publishing their own source code! We are generally convinced the
authors believe an anti-capitalist software firm is somehow a closed
organisation that survives off hiding information from its consumers.
Users of that license may be able to stay afloat by hiding source code
and enforcing private property, but they have done nothing that can
remotely be called anti-capitalist. The form of organisation suggested
by such a license is nothing more than plain old capitalism with its
intellectual property and information hoarding; we could draw a com-
parison to socialism for the rich and call it socialism for the producer,
but it is not even that, as it paints collaboration between producers as
a disadvantage! This attempt to avoid capitalism has somehow become
so morbid, that it has wrapped around and reproduced capitalism
again, and it did not even require a year or two for the Anti-Capitalist
Software Party to turn in on its supporters; this license was truly dead
on arrival.

10This all began because someone realised open source code was a free replacement
for labour for capitalists; suggesting that one has limited resources with open source
code is to fully reject the premise one has started with!

https://anticapitalist.software/

34 Chapter 2. Peer production

Chapter 3

Applied language

We have now discussed how to produce liberatory software and how
to form cooperative networks to support production, but we need to
properly liberate and decentralise the subjects of our products now. A
liberatory technology is fundamentally a product of its society; even
if it is developed in a dynamic manner, and its authors are organised,
one cannot seriously suggest that it is an improvement on anything if it
provides leverage for power imbalances and abuse.

We will examine the stratification of social relationships established
on “decentralised” only in software networks; including how social
standing is reflected in a social network (which we may as well call our
society for the sake of argument), and the ways in which a mediating
moderator can make interactions more difficult than they could be.
We will then examine the effects of the simplification of the means of
presentation and how we can communicate on social networks, and
the effects of making protocol extension part of a protocol itself.

35

36 Chapter 3. Applied language

Digital feudalism and social capitalism

<Aurora_v_kosmose> Making any and all storage depen-
dent on having dcoin also has the issue of locking out
anyone with limited monetary means. If only decentralized
systems were easy.
<no-defun-allowed> Indeed, it just perpetuates hierarchy.
<aeth> I mean, that’s basically the point of Urbit in partic-
ular... I’m surprised you didn’t mention (or notice?) the
neo-feudalism of it
<no-defun-allowed> I did notice it, and I didn’t say anything
because I expected it.
<aeth> heh

A conversation in #lispcafe about cryptocurrencies

Many software projects, including free-and-open-source projects
and even soon-to-be “ethically licensed” projects, create hierarchies
that have no need to exist. Two examples of types of project ap-
pear to continuously perpetuate hierarchies: cryptocurrencies, for
self-evident reasons;1 and discussion sites of various forms, including
micro-blogging sites (including Mastodon, Twitter, and so on), and
online forums (Lemmy, Lobsters, Raddle/Postmill, Reddit, and so on).

Terms like “digital feudalism” or “social capitalism” are often used
to describe hierarchies in socialisation. While some will object to
misusing terminology like that, we will continue to use it as such, as
our readers will immediately acknowledge that these are probably not
good systems to keep around, and that they are good analogies of the
power structures they describe. We will provide our interpretations of
these words in the context of the Fediverse, a network of interconnected
micro-blogging servers that typically run some software that supports
the ActivityPub messaging protocol, often using Mastodon or Pleroma –
but our commentary is not limited to any specific software and protocol
used. It is all to do with how this software handles moderation, and
how people on this user handle interacting with each other. Perhaps
the more radical projects which end up recreating these forms of

1Although there are some currencies that attempt to disrupt the implicit capitalism in
them, such as Faircoin, by using a more direct consensus system instead of proof-of-work
or proof-of-stake.

37

hierarchy are the most insidious, as one expects them to have made an
improvement.

Digital feudalism

The first system we identified was one of digital feudalism; in which
moderators, who usually would act as if they are serving their serfs,
have total and essentially unaccountable control over them. On the
Fediverse, this analogy is pushed even further than usual, as servers
and their hosts act as the lords of this system; as it is quite difficult to
transfer an account between servers, and that notion of “transferring”
loses identity anyway.

Though we have not found any proponents of feudalism fortunately,
attempts at suggesting this hierarchy promotes “autonomy” sound as
ridiculous as proponents of “libertarian” capitalism (some union of
propertarians, American libertarians, “anarcho”-capitalists, and so on).

As hinted at before, excusal of hierarchies when software is involved
is not exclusive to capitalist apologists! No followers of an ideology or
lack thereof are particularly more aware of the kind of power dynamics
they partake in than others, despite any claims otherwise; our fellow
radicals appear to forget what they learned about the People’s Stick and
all those other analogies and critiques for power, when they believe
they can do self-contradictory things like forming “an organisational
model and governance that puts marginalised voices first”2 and provide
autonomy for their users by strengthening moderation and centralising
power into one in-group. In the case that a server operator must
step in, they must have a damned good reason, their actions should
almost always be reversible, and if not, they better be able to be held
accountable if they screw up. This naïve trust in “moderators doing
moderation” lead one of our colleagues to write a corollary to Bakunin:

When the people are being beaten with a stick, they are
not much happier if it is a particuarly efficient stick, that
allows many people to be beaten at once.

Dlorah, 2020

2Clipped from https://parast.at/

https://parast.at/

38 Chapter 3. Applied language

The efficient stick is the norm for Fediverse moderation, as im-
proving the efficiency of moderation is generally considered a good
idea, when moderators can only be trusted to do the right thing; a
relationship that may or may not be acceptable in the long term (our
experience leads us to think it is not usually acceptable though).

But unlike lords of feudal society, the powers associated with mod-
eration have significant toil attached to them! While most cases a
moderator may have to scan through are benign, some cases can re-
quire time to research what has happened, if it has happened before,
in order to reach what they believe is the fairest solution, and some
other cases are so blatantly horrific that moderators looking at them
are severely disturbed.

We have heard about both kinds of cases from our friends, but as
we trend towards larger servers with fewer moderators per user, mod-
eration can even become traumatic: a 2018 lawsuit concluded recently
with Facebook paying out $52 million to moderators whom “suffered
psychological trauma and symptoms of post-traumatic stress disorder
from repeatedly reviewing violent images” (Wong, 2020). While we
are some magnitudes of growth away from, say, having to filter through
violent and gruesome imagery frequently, a solution appear that would
relieve moderators of most of their current activities may be well re-
ceived, and we could agree that they would distribute their powers to
the community in return; with no doubt that the distribution of stress
from some of the community would greatly improve their mood, result-
ing in fewer incidents to moderate! Collaborative filtering, succinctly
describable as copying actions taken by users that take actions similar
to a user, would be an ideal mechanism for distributed moderation; it
has been used on Usenet to recommend good articles (Syst et al., 1997),
and moderation is basically the reverse of that. Using a distributed
technique “should be more than enough to effectively automate most
of the role of [a moderator]” (Dlorah, 2020).

In short, it is very hard to say who wins in digital feudalism; many
users are at the whim of tyrannical moderators, or cannot contribute
without any good moderators, and the magnitude and quality of the
work moderators must do cannot be healthy for them in the long term.
Providing users with the ability to collaborate and filter their own
environment, and reducing the stress of moderators would universally
improve the subjective quality of the Fediverse.

39

Social capitalism

Even outside the realm of moderation, there is also an imposition of
some kind of “ownership” of discourse, and huge variations in social
standing, which appear to directly affect how one communicates with
others. We call this social capitalism, because just like actual capitalism,
one with enough capital can do almost anything, regardless of harm
caused, and escape punishment just by having social capital. The words
uttered when one gets on another’s nerves are no longer “fuck off” or
“get lost”, they now try to show force by indicating ownership of the
conversation! “Get off my timeline!” “Fuck outta of my mentions!”3 Of
course, one does not need to justify attempting to rid themselves of
unpleasant people; but the same phrases are also frequently used to
avoid being held accountable for providing misinformation, or being
unpleasant themselves.

The belief that a conversation somehow belongs to someone, and
that they have some authority over it even, is highly erroneous. If we
were to assume that someone could own a conversation, we may as
well analyse a conversation as if it were a commodity. It is clear that
any notion of value is produced by whoever continues and reads the
conversation. The role of a host of any shape is greatly overstated;
Kleiner notes that “the real value of [sites that share community-created
value are] not created by the developers of the site; rather, it is created
by the people who upload [content] to the site.” (Kleiner, 2010) A
conversation in a public space derives value from all participants in the
conversation, and so any one of the participants has an equal claim to
“owning” it.

Furthermore, starting an informal conversation in the physical
world obviously does not give one any control of it. It should be
surprising when the acceptable social behaviours change between
modes of communcation. Often, there are reasons for behaviours
to change, but they are caused by, say, limitations in new modes of
communcation, and are not arbitrary. There is no reason for an online
discussion to belong to anyone.

The assumption that a discussion belongs to anyone leads to hierar-
chical and asymmetrical dynamics, including a suggestion we recently

3Mentions do force one to read something they don’t want to, though; but it is possible
to mute conversations and not hear more of it.

40 Chapter 3. Applied language

read that “[we need] posts that can only be replied to by mutuals
but public and shareable freely”. While this admittedly sounds very
nice, it is trivial to abuse, and is a clear continuation of this myth of
social property. The assumption here extends to expecting that the
person who posted the first message is going to be polite. When that
person is being impolite, restricting replies but freely allowing sharing
is quite the opposite of what may be desirable. As such, indicating that
this would produce a safe space is also misleading; as with politeness
outside the Internet, one who publishes publicly should expect to treat
their readers as they would like to be treated themself, and there are
no such guarantees in an asymmetrical environment.

These examples are quite nasty, and we may sound like we can only
imagine the worst by highlighting only those. Humourous comments
such as “Reply to win a valuable thing”, and “Blatantly wrong statement:
change my view” where the reader is unable to reply, are less grim
examples of the same issues, which don’t cause any harm to any other
users. The issues are only used for comedic effect, as the comments are
deliberately written to try to get a response from the reader, but they
are unable to do so, despite that it would be beneficial for them.

Both social capitalism and digital feudalism are forms of asymmetri-
cality in power, which is anathematic to socialisation and establishing
any kind of relationship or mutual trust, allowing one to write whatever
and repress anyone seeking to hold them accountable. It is no less
important to abolish social asymmetry than it is to abolish asymmetry
in computer systems, and a decentralised computer system cannot try
to enforce the former with the latter. While the demands ten years ago
may have been to establish decentralised networks, we now demand
social decentralisation of the resulting networks which only exhibit
decentralisation in computer networks.

The means of presentation and extension

The inverse of a “radical” proprietary software-producing firm as imag-
ined in Source materials has appeared many times before, with “free
software” projects that are run like proprietary projects, such as the
Signal messaging program. The Signal developers have many arbitrary
and unenforceable constraints on their users, like disallowing users

41

from using their own modified clients4 because it somehow slows down
making changes. Long ago, we wrote about how this is the opposite of
what has actually happened in the Common Lisp community, how net-
work effects would shift a userbase to unanimously using or not using
a feature, and how some abstract thinking can relieve implementers of
having to deal with updates:

Other standards like Bordeaux threads and Gray streams
have seen widespread implementation [in implementations
of Common Lisp], despite not being in the ANSI Common
Lisp standard, or other authoritative documentation. De-
facto standards such as these are very popular simply be-
cause everyone can use them, creating a kind of network
effect in a userbase.

[Moxie] attributes his issues to “XEPs that aren’t consis-
tently applied anywhere”, but if someone wants to run a
server or entry point into a federated network, they should
be up-to-date on new extensions; not doing so repels users.
Thanks to the network effect previously mentioned, users
of inferior servers can move to better ones, probably the
ones that their connections use.

With a layer of indirection, you can just push out “code”
(well, it can be Turing complete if you want) to add new
features and types to a program.

Patton, 2018

It can easily be said that this was a poor attempt at arguing whatever
point was being made then; but when “adding features” is part of one’s
protocol, then one only has to implement that protocol once. This line
of thinking lead to the replicated object system design of Netfarm, one
of our experiments in producing what we would consider anarchist
software, and the implications of such a design may be very interesting.

The means of presentation are the forms in which a communication
platform allows one to express or present an idea. For example, a

4See this rule in action in https://github.com/LibreSignal/LibreSignal/issues/37
and a blog post about how it must feel to be one of those puny decentralised protocols that
can’t do anything at https://signal.org/blog/the-ecosystem-is-moving/. We strongly
advise against reading either sober.

https://github.com/LibreSignal/LibreSignal/issues/37
https://signal.org/blog/the-ecosystem-is-moving/

42 Chapter 3. Applied language

microblogging site allows expression in text with fewer than some
number of characters (often allowing uploading other files, displaying
images inline), a technical journal allows expression in articles, a forum
allows expression primarily in posts and comments, and so on.

Diverse information demands diverse representations, and forcing
information across many services that each handle a specific means of
presentation and representation creates fragmentation and hampers
discoverability.

The first one is the Marxist notion of a general intel-
lect. With today’s platforms, we are not facing such a
phenomenon. Our use of contemporary digital platforms is
extremely fragmented and there is no such thing as progress
of the collective intelligence of the entire working class or
society. Citizens are facing relentless efforts deployed by
digital capitalists to fragment, standardise, and ‘taskify’
their activities and their very existences.

Casilli and Marsili, 2018

Opening up a platform to accept any means of presentation would
annihilate any gimmicks or distinguishing features of it, but that may be
the most interesting approach possible, as such a platform could present
any information in the most appropriate way. Even with the media that
common platforms support, support is limited to a lousy subset, usually
prohibiting typesetting of mathematical equations, referencing, and
sometimes even basic formatting.5 While, say, Mastodon and LATEX
both transmit text in some form, the former is evidently more suitable
for near-real-time communication, whereas the latter is more suitable
for long-form writings, such as this book. It would not be hard to give
the former the capabilities of the latter: some servers already provide
mathematical typesetting and formatting options.

Beyond that, there are many more advanced means of presenta-
tion which can be immediately seen to have uses, that are not even
close to implementable on the common platforms of today, such as

5It may be argued that opening up the means of presentation may make it inacces-
sible, as some formats are difficult to interpret by some users. However, alternative
presentations can be recovered at the least, which is not the case for workarounds for
less expressive means of presentation.

43

Figure 3.1: Providing a simulation that the reader can run can be much
more illustrative than using a static medium to make a point.

viewing three-dimensional objects, dynamic and randomised mediums
like soundscapes, and simulations of natural phenomena (such as the
demonstration of approximating a Bates distribution in Figure 3.1).
Should our dreams of casual programming (as mentioned in Chapter
1) come true, it would not be hard to believe sharing programs directly
would be commonplace.

However, it should not be necessary to modify a server to provide
these new means of presentation. To modify the behaviour of the
platform without modifying the platform itself, the platform will have
to communicate in programs and/or objects that describe and present
themselves, instead of text and/or plain media formats. Implementing
such a platform may be very difficult to begin with, but it is much
more tedious to incrementally extend a platform, such as the Web or
some protocol residing on it such as ActivityPub, that merely display
documents and texts. For reference, the Chromium web browser con-
tains about 34 million lines of code, and a complete Squeak Smalltalk
environment contains only about 5 million; 4 million lines in OpenS-
malltalk, a just-in-time compiling virtual machine, and 1 million lines
in the Smalltalk environment, including a graphical environment, byte-
code compiler, debugger and class browser, and some other components

44 Chapter 3. Applied language

that do not appear in a browser, including an email client, graphics
framework, and package manager.6

Such a total lines-of-code count could be misleading as to how much
work an implementer has to do; much of the complexity would be
reusable with almost no modification per implementation, as it would
make up the distributed “image” the client retrieves. Furthermore,
a large subset of the functionality of modern Squeak could likely be
significantly smaller; the first implementation of the Squeak virtual
machine was written in only about eight thousand lines of code (Ingalls
et al., 1997).

This is still magnitudes more code than the more common reaction
to the complexity of the Web would require, in which protocols are
proposed that are intended to only display “documents”. As we have
mentioned, what constitutes presenting a text document is very dubi-
ous, yet most suggestions provide very little to work with when tasked
with book-making. Gemini is one example of this reaction, accompa-
nied with some vague, nostalgic association with the “essence of the
Web”. It is supposed you can write a Gemini client in less than a few
hundred lines of code,7 yet the end result is sending uninteractive text
with minimal formatting across a network. For what it can produce,
the result is hardly an advancement over the printing press! We don’t
need a computer to publish text documents; pen and paper, and either
patience or a photocopier would suffice. And, of course, you can draw
and format the text however you like with pen and paper. What we
need instead is a better book:

We do not feel that technology is a necessary constituent
for this process any more than is the book. It may, how-
ever, provide us with a better “book”, one which is active
[. . .] rather than passive. It may be something with the
attention grabbing powers of TV, but controllable by [the
user] rather than the networks. It can be like a piano: a
product of technology, yes, but one which can be a tool, a

6There are quite a few debugging tools in a browser; many provide debuggers, profil-
ers and whatnot, but they do not usually contain complete programming environments.

7“Experiments suggest that a very basic interactive client takes more like a minimum
of 100 lines of code, and a comfortable fit and moderate feature completeness need more
like 200 lines.” https://gemini.circumlunar.space/docs/faq.html

https://gemini.circumlunar.space/docs/faq.html

45

toy, a medium of expression, a source of unending pleasure
and delight. . . and as with most gadgets in unenlightened
hands, a terrible drudge!

Kay, 1972

A computer is a “universal simulator”, and so with the appropri-
ate peripheral devices, it is a form of meta-media, in which its users
construct other forms of media, such as books, animations, programs,
and so on. (Some of these forms of media even could only exist on a
computer, such as video games.) Reducing the forms of media one can
produce is antithetical to the concept of computing itself, and makes
any labour put into designing computers and their media look pointless.
For example, an article published by Crimethinc8, which detailed the
current extraction and hazards of manufacturing computers quite well,
conveniently did not mention the ecological impacts of manufacturing
the media that a computer could replace. The imagery of poisonous
fumes, factory lines, and so on, is never contrasted with the equivalent
dangers of the processes of manufacturing books, tapes, mechanical
devices, and the other analog medias; let alone even leaving a mechan-
ical, monotonous process to a few people, whom work shifts keeping
a boring system regulated, instead of having a computer do it. It is
not so unrealistic to compare the creation of one computer to hundreds
of books and tapes, and the lifespans wasted by people performing
the dull work themselves simultaneously. But if we continue with
the simplification-at-all-costs which the likes of the Gemini protocol
promise, such a comparison would provide much better evidence in
favour of avoiding computing.

With some consideration of protocol self-extension, we can happily
intermingle many different modes of expression and representation.
With the normalisation of protocol self-extension, we could greatly
reduce the toil protocol implementers must perform, while not com-
promising on the expression of the protocol. Messing with a protocol
may become an emerging mode of expression in itself, like Dadaists
had done for poetry and art, and demoscene programmers do with
the obscure features (optionally to be read in air-quotes) of computer
hardware. In any case, an appropriate meta-means of presentation

8https://crimethinc.com/2003/12/01/destructive-production-can-we-really-
expect-to-manufacture-complex-technologies-in-an-anarchist-society

https://crimethinc.com/2003/12/01/destructive-production-can-we-really-expect-to-manufacture-complex-technologies-in-an-anarchist-society
https://crimethinc.com/2003/12/01/destructive-production-can-we-really-expect-to-manufacture-complex-technologies-in-an-anarchist-society

46 Chapter 3. Applied language

can vastly expand the information that can be communicated on one
protocol and one set of implementations.

Conclusion

This book describes some of the things we can do with dynamic systems
and peer production, and what we should be able to do in the future
with that support and an analysis of eliminating hierarchies, in all the
forms that they may appear in our software.

We hope for the annihilation of odd constraints and the decentral-
isation of all things, and only then could we have properly liberated
computing. To achieve this, we must dissolve hierarchies in our soft-
ware, our means of production, and our social applications of software.
What would be produced would be formless and incomparable to any
computing systems that exist now; but what could emerge from such
formlessness and adaptability would be absolutely beautiful!

To reiterate what we are pushing for in the end: we believe that
the computer can, and should be, an ideal transport for one’s imagi-
nation and the ideas set forth by it. Today, we are poised to rebuild a
computing environment set to support the creative process, with fewer
reasons to self-restrain; and to form collaborative bonds which do not
diminish the uniqueness and imaginations of their participants.

The confident statement closing the Design Principles of Smalltalk
(Ingalls, 1981) remains true, despite programmers, even radical or
anarchist or anything else, attempting to avoid it: “Even as the clock
ticks, better and better computer support for the creative spirit is
evolving. Help is on the way.” As long as there are programmers,
there will always be an urge to let the creative spirit inflict itself on
programming more than before. But will this urge be followed through
with, or will we all collectively agree to silence it?

Appendix A

Cooperative Software
License

This book is licensed under the Cooperative Software License, written
by Jaidyn Levesque whom noticed the Peer Production License (as
written in an appendix of Kleiner, 2010) did not offer protections for
source material, as discussed in Chapter 2.

You are very welcome to get the LATEX source for this book from
https://gitlab.com/cal-coop/software-anarchy/ and modify it for your
needs; but we ask that if you change the contents in the book (as
opposed to, say, changing the layout to fit your preferred printing
medium), you make it clear you have modified it.

The License is quite long; if it would be preferable not to print it,
you are also welcome to replace the following copy of the license with
a reference to a copy online. We have provided comments at the end of
the main source file for this book (software-anarchy.tex) which may
be used to replace this text with a reference to the License.

Cooperative Software License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS
OF THIS COOPERATIVE SOFTWARE LICENSE (LICENSE). THE WORK
IS PROTECTED BY COPYRIGHT AND ALL OTHER APPLICABLE LAWS.

47

https://gitlab.com/cal-coop/software-anarchy/

48 Chapter A. Cooperative Software License

ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER
THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED. BY EXERCISING
ANY RIGHTS TO THE WORK PROVIDED IN THIS LICENSE, YOU
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE
EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT,
THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN AS
CONSIDERATION FOR ACCEPTING THE TERMS AND CONDITIONS
OF THIS LICENSE AND FOR AGREEING TO BE BOUND BY THE TERMS
AND CONDITIONS OF THIS LICENSE.

1. Definitions

a. Adaptation means a work based upon the Work, or upon the Work
and other pre-existing works, such as a translation, adaptation,
derivative work, arrangement of music or other alterations of
a literary or artistic work, or phonogram or performance and
includes cinematographic adaptations or any other form in which
the Work may be recast, transformed, or adapted including in
any form recognizably derived from the original, except that
a work that constitutes a Collection will not be considered an
Adaptation for the purpose of this License. For the avoidance
of doubt, where the Work is a musical work, performance or
phonogram, the synchronization of the Work in timed-relation
with a moving image (synching) will be considered an Adaptation
for the purpose of this License.

b. Collection means a collection of literary or artistic works, such as
encyclopedias and anthologies, or performances, phonograms or
broadcasts, or other works or subject matter other than works
listed in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations,
in which the Work is included in its entirety in unmodified form
along with one or more other contributions, each constituting
separate and independent works in themselves, which together
are assembled into a collective whole. A work that constitutes a
Collection will not be considered an Adaptation (as defined above)
for the purposes of this License.

49

c. Distribute means to make available to the public the original and
copies of the Work or Adaptation, as appropriate, through sale,
gift or any other transfer of possession or ownership.

d. Licensor means the individual, individuals, entity or entities that
offer(s) the Work under the terms of this License.

e. Original Author means, in the case of a literary or artistic work,
the individual, individuals, entity or entities who created the
Work or if no individual or entity can be identified, the publisher;
and in addition:

(i) in the case of a performance the actors, singers, musicians,
dancers, and other persons who act, sing, deliver, declaim,
play in, interpret or otherwise perform literary or artistic
works or expressions of folklore;

(ii) in the case of a phonogram the producer being the person
or legal entity who first fixes the sounds of a performance
or other sounds; and,

(iii) in the case of broadcasts, the organization that transmits
the broadcast.

f. Work means the literary and/or artistic work offered under the
terms of this License including without limitation any production
in the literary, scientific and artistic domain, whatever may be the
mode or form of its expression including digital form, such as a
book, pamphlet and other writing; a lecture, address, sermon or
other work of the same nature; a dramatic or dramatico-musical
work; a choreographic work or entertainment in dumb show; a
musical composition with or without words; a cinematographic
work to which are assimilated works expressed by a process
analogous to cinematography; a work of drawing, painting, ar-
chitecture, sculpture, engraving or lithography; a photographic
work to which are assimilated works expressed by a process anal-
ogous to photography; a work of applied art; an illustration, map,
plan, sketch or three-dimensional work relative to geography,
topography, architecture or science; a performance; a broadcast;
a phonogram; a compilation of data to the extent it is protected
as a copyrightable work; or a work performed by a variety or

50 Chapter A. Cooperative Software License

circus performer to the extent it is not otherwise considered a
literary or artistic work.

g. You means an individual or entity exercising rights under this
License who has not previously violated the terms of this License
with respect to the Work, or who has received express permission
from the Licensor to exercise rights under this License despite a
previous violation.

h. Publicly Perform means to perform public recitations of the Work
and to communicate to the public those public recitations, by any
means or process, including by wire or wireless means or public
digital performances; to make available to the public Works in
such a way that members of the public may access these Works
from a place and at a place individually chosen by them; to
perform the Work to the public by any means or process and
the communication to the public of the performances of the
Work, including by public digital performance; to broadcast and
rebroadcast the Work by any means including signs, sounds or
images.

i. Reproduce means to make copies of the Work by any means
including without limitation by sound or visual recordings and the
right of fixation and reproducing fixations of the Work, including
storage of a protected performance or phonogram in digital form
or other electronic medium.

j. Software means any digital Work which, through use of a third-
party piece of Software or through the direct usage of itself on
a computer system, the memory of the computer is modified
dynamically or semi-dynamically. Software, secondly, processes
or interprets information.

k. Source Code means the human-readable form of Software through
which the Original Author and/or Distributor originally created,
derived, and/or modified it.

l. Network Service means the use of a piece of Software to interpret
or modify information that is subsequently and directly served to
users over a computer network.

51

2. Fair Dealing Rights

Nothing in this License is intended to reduce, limit, or restrict any uses
free from copyright or rights arising from limitations or exceptions that
are provided for in connection with the copyright protection under
copyright law or other applicable laws.

3. License Grant

Subject to the terms and conditions of this License, Licensor hereby
grants You a worldwide, royalty-free, non-exclusive, perpetual (for the
duration of the applicable copyright) license to exercise the rights in
the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more
Collections, and to Reproduce the Work as incorporated in the
Collections;

b. to create and Reproduce Adaptations provided that any such Adap-
tation, including any translation in any medium, takes reason-
able steps to clearly label, demarcate or otherwise identify that
changes were made to the original Work. For example, a trans-
lation could be marked “The original work was translated from
English to Spanish,” or a modification could indicate “The original
work has been modified.”;

c. to Distribute and Publicly Perform the Work including as incorpo-
rated in Collections; and,

d. to Distribute and Publicly Perform Adaptations. The above rights
may be exercised in all media and formats whether now known
or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the
rights in other media and formats. Subject to Section 8(g), all
rights not expressly granted by Licensor are hereby reserved,
including but not limited to the rights set forth in Section 4(h).

52 Chapter A. Cooperative Software License

4. Restrictions

The license granted in Section 3 above is expressly made subject to and
limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the
terms of this License. You must include a copy of, or the Uniform
Resource Identifier (URI) for, this License with every copy of
the Work You Distribute or Publicly Perform. You may not offer
or impose any terms on the Work that restrict the terms of this
License or the ability of the recipient of the Work to exercise the
rights granted to that recipient under the terms of the License.
You may not sublicense the Work. You must keep intact all notices
that refer to this License and to the disclaimer of warranties with
every copy of the Work You Distribute or Publicly Perform. When
You Distribute or Publicly Perform the Work, You may not impose
any effective technological measures on the Work that restrict the
ability of a recipient of the Work from You to exercise the rights
granted to that recipient under the terms of the License. This
Section 4(a) applies to the Work as incorporated in a Collection,
but this does not require the Collection apart from the Work itself
to be made subject to the terms of this License. If You create a
Collection, upon notice from any Licensor You must, to the extent
practicable, remove from the Collection any credit as required
by Section 4(f), as requested. If You create an Adaptation, upon
notice from any Licensor You must, to the extent practicable,
remove from the Adaptation any credit as required by Section
4(f), as requested.

b. Subject to the exception in Section 4(e), you may not exercise
any of the rights granted to You in Section 3 above in any manner
that is primarily intended for or directed toward commercial
advantage or private monetary compensation. The exchange of
the Work for other copyrighted works by means of digital file-
sharing or otherwise shall not be considered to be intended for
or directed toward commercial advantage or private monetary
compensation, provided there is no payment of any monetary
compensation in connection with the exchange of copyrighted
works.

53

c. If the Work meets the definition of Software, You may exercise
the rights granted in Section 3 only if You provide a copy of the
corresponding Source Code from which the Work was derived in
digital form, or You provide a URI for the corresponding Source
Code of the Work, to any recipients upon request.

d. If the Work is used as or for a Network Service, You may exercise
the rights granted in Section 3 only if You provide a copy of the
corresponding Source Code from which the Work was derived in
digital form, or You provide a URI for the corresponding Source
Code to the Work, to any recipients of the data served or modified
by the Network Service.

e. You may exercise the rights granted in Section 3 for commercial
purposes only if:

i. You are a worker-owned business or worker-owned collec-
tive; and

ii. after tax, all financial gain, surplus, profits and benefits
produced by the business or collective are distributed among
the worker-owners; and

iii. You are not using such rights on behalf of a business other
than those specified in 4(e.i) and elaborated upon in 4(e.ii),
nor are using such rights as a proxy on behalf of a business
with the intent to circumvent the aforementioned restric-
tions on such a business.

f. Any use by a business that is privately owned and managed, and
that seeks to generate profit from the labor of employees paid by
salary or other wages, is not permitted under this license.

g. If You Distribute, or Publicly Perform the Work or any Adaptations
or Collections, You must, unless a request has been made pursuant
to Section 4(a), keep intact all copyright notices for the Work and
provide, reasonable to the medium or means You are utilizing:

i. the name of the Original Author (or pseudonym, if appli-
cable) if supplied, and/or if the Original Author and/or
Licensor designate another party or parties (e.g., a sponsor

54 Chapter A. Cooperative Software License

institute, publishing entity, journal) for attribution (Attribu-
tion Parties) in Licensor’s copyright notice, terms of service
or by other reasonable means, the name of such party or
parties;

ii. the title of the Work if supplied;

iii. to the extent reasonably practicable, the URI, if any, that
Licensor specifies to be associated with the Work, unless
such URI does not refer to the copyright notice or licensing
information for the Work; and,

iv. consistent with Section 3(b), in the case of an Adaptation,
a credit identifying the use of the Work in the Adaptation
(e.g., “French translation of the Work by Original Author,”
or “Screenplay based on original Work by Original Author”).

The credit required by this Section 4(g) may be implemented in
any reasonable manner; provided, however, that in the case of a
Adaptation or Collection, at a minimum such credit will appear, if
a credit for all contributing authors of the Adaptation or Collection
appears, then as part of these credits and in a manner at least
as prominent as the credits for the other contributing authors.
For the avoidance of doubt, You may only use the credit required
by this Section for the purpose of attribution in the manner set
out above and, by exercising Your rights under this License, You
may not implicitly or explicitly assert or imply any connection
with, sponsorship or endorsement by the Original Author, Licensor
and/or Attribution Parties, as appropriate, of You or Your use of
the Work, without the separate, express prior written permission
of the Original Author, Licensor and/or Attribution Parties.

h. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those ju-
risdictions in which the right to collect royalties through
any statutory or compulsory licensing scheme cannot be
waived, the Licensor reserves the exclusive right to collect
such royalties for any exercise by You of the rights granted
under this License;

55

ii. Waivable Compulsory License Schemes. In those jurisdic-
tions in which the right to collect royalties through any
statutory or compulsory licensing scheme can be waived,
the Licensor reserves the exclusive right to collect such royal-
ties for any exercise by You of the rights granted under this
License if Your exercise of such rights is for a purpose or use
which is otherwise than noncommercial as permitted under
Section 4(b) and otherwise waives the right to collect royal-
ties through any statutory or compulsory licensing scheme;
and,

iii. Voluntary License Schemes. The Licensor reserves the right
to collect royalties, whether individually or, in the event
that the Licensor is a member of a collecting society that
administers voluntary licensing schemes, via that society,
from any exercise by You of the rights granted under this
License that is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(b).

i. Except as otherwise agreed in writing by the Licensor or as may
be otherwise permitted by applicable law, if You Reproduce, Dis-
tribute or Publicly Perform the Work either by itself or as part of
any Adaptations or Collections, You must not distort, mutilate,
modify or take other derogatory action in relation to the Work
which would be prejudicial to the Original Author’s honor or rep-
utation. Licensor agrees that in those jurisdictions (e.g. Japan),
in which any exercise of the right granted in Section 3(b) of this
License (the right to make Adaptations) would be deemed to be
a distortion, mutilation, modification or other derogatory action
prejudicial to the Original Author’s honor and reputation, the
Licensor will waive or not assert, as appropriate, this Section, to
the fullest extent permitted by the applicable national law, to
enable You to reasonably exercise Your right under Section 3(b)
of this License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN
WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO

56 Chapter A. Cooperative Software License

REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERN-
ING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MER-
CHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONIN-
FRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WH-
ETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EX-
CLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO
EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THE-
ORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE
OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR
THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Adaptations or Collec-
tions from You under this License, however, will not have their
licenses terminated provided such individuals or entities remain
in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and
8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted
here is perpetual (for the duration of the applicable copyright
in the Work). Notwithstanding the above, Licensor reserves the
right to release the Work under different license terms or to stop
distributing the Work at any time; provided, however that any
such election will not serve to withdraw this License (or any
other license that has been, or is required to be, granted under
the terms of this License), and this License will continue in full
force and effect unless terminated as stated above.

57

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Col-
lection, the Licensor offers to the recipient a license to the Work
on the same terms and conditions as the license granted to You
under this License.

b. Each time You Distribute or Publicly Perform an Adaptation, Licen-
sor offers to the recipient a license to the original Work on the
same terms and conditions as the license granted to You under
this License.

c. If the Work is classified as Software, each time You Distribute or
Publicly Perform an Adaptation, Licensor offers to the recipient a
copy and/or URI of the corresponding Source Code on the same
terms and conditions as the license granted to You under this
License.

d. If the Work is used as a Network Service, each time You Distribute
or Publicly Perform an Adaptation, or serve data derived from the
Software, the Licensor offers to any recipients of the data a copy
and/or URI of the corresponding Source Code on the same terms
and conditions as the license granted to You under this License.

e. If any provision of this License is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this License, and without further
action by the parties to this agreement, such provision shall
be reformed to the minimum extent necessary to make such
provision valid and enforceable.

f. No term or provision of this License shall be deemed waived and
no breach consented to unless such waiver or consent shall be in
writing and signed by the party to be charged with such waiver
or consent.

g. This License constitutes the entire agreement between the parties
with respect to the Work licensed here. There are no understand-
ings, agreements or representations with respect to the Work not
specified here. Licensor shall not be bound by any additional

58 Chapter A. Cooperative Software License

provisions that may appear in any communication from You. This
License may not be modified without the mutual written agree-
ment of the Licensor and You.

h. The rights granted under, and the subject matter referenced, in
this License were drafted utilizing the terminology of the Berne
Convention for the Protection of Literary and Artistic Works (as
amended on September 28, 1979), the Rome Convention of 1961,
the WIPO Copyright Treaty of 1996, the WIPO Performances
and Phonograms Treaty of 1996 and the Universal Copyright
Convention (as revised on July 24, 1971). These rights and
subject matter take effect in the relevant jurisdiction in which
the License terms are sought to be enforced according to the
corresponding provisions of the implementation of those treaty
provisions in the applicable national law. If the standard suite of
rights granted under applicable copyright law includes additional
rights not granted under this License, such additional rights are
deemed to be included in the License; this License is not intended
to restrict the license of any rights under applicable law.

Appendix B

Bibliography

Abelson, H., & Sussman, G. (1996). Structure and interpretation of
computer programs. MIT Press. http://mitpress .mit .edu/
sicp/

Armstrong, J. (2003). Making reliable distributed systems in the presence
of software errors (Doctoral dissertation). KTH Royal Institute
of Technology. http://erlang.org/download/armstrong_
thesis_2003.pdf

Baker, H. (1991). Dubious achievement. Communications of the ACM.
https : / / web . archive . org / web / 20160321151425 / www .
pipeline.com/~hbaker1/letters/CACM-DubiousAchievement.
html

Bennett, J. G. (2009). Talks on Beelzebub’s tales. Bennett Books.
Bookchin, M. (1971). Post scarcity anarchism. Ramparts Press. https:

//theanarchistlibrary.org/library/murray-bookchin-post-
scarcity-anarchism-1

Bookchin, M. (1978). Why doing the impossible is the most rational
thing we can do. https://theanarchistlibrary.org/library/
murray-bookchin-why-doing-the-impossible- is-the-most-
rational-thing-we-can-do

Bracha, G. (2013). Does thought crime pay? Proceedings of the 2013
Companion Publication for Conference on Systems, Programming
and Applicaitons: Software for Humanity.

59

http://mitpress.mit.edu/sicp/
http://mitpress.mit.edu/sicp/
http://erlang.org/download/armstrong_thesis_2003.pdf
http://erlang.org/download/armstrong_thesis_2003.pdf
https://web.archive.org/web/20160321151425/www.pipeline.com/~hbaker1/letters/CACM-DubiousAchievement.html
https://web.archive.org/web/20160321151425/www.pipeline.com/~hbaker1/letters/CACM-DubiousAchievement.html
https://web.archive.org/web/20160321151425/www.pipeline.com/~hbaker1/letters/CACM-DubiousAchievement.html
https://theanarchistlibrary.org/library/murray-bookchin-post-scarcity-anarchism-1
https://theanarchistlibrary.org/library/murray-bookchin-post-scarcity-anarchism-1
https://theanarchistlibrary.org/library/murray-bookchin-post-scarcity-anarchism-1
https://theanarchistlibrary.org/library/murray-bookchin-why-doing-the-impossible-is-the-most-rational-thing-we-can-do
https://theanarchistlibrary.org/library/murray-bookchin-why-doing-the-impossible-is-the-most-rational-thing-we-can-do
https://theanarchistlibrary.org/library/murray-bookchin-why-doing-the-impossible-is-the-most-rational-thing-we-can-do

60 Chapter B. Bibliography

Casilli, A., & Marsili, L. (2018). Earn money online: The politics of
microwork and machines. Green European Journal. http://
www.casilli.fr/2018/05/18/we-need-a-political- subject-
capable-to-think-an-alternative-to-digital-labor-interview-
green-european-journal-vol-17-2018/

Chodorkoff, D. (2010). Alternative technology and urban reconstruc-
tion. https://libcom.org/library/alternative- technology-
urban-reconstruction

Dlorah, N. (2020). A Parastatal problem. http : / / noslebadlorah .
altervista.org/parastatal.html

Gabriel, R. (2002). Objects have failed. https://dreamsongs.com/
ObjectsHaveFailedNarrative.html

Garfinkel, S., Weise, D., & Strassmann, S. (1994). The Unix-Haters
handbook. International Data Group. http://simson.net/ref/
ugh.pdf

Gillis, W. (2015). Science as radicalism. https://theanarchistlibrary.
org/library/science-as-radicalism-william-gillis

Ingalls, D. (2017). Yesterday’s computer of tomorrow: The Xerox Alto.
https://www.youtube.com/watch?v=NqKyHEJe9_w

Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., & Kay, A. (1997). Back
to the future: The story of Squeak, a practical Smalltalk written
in itself. OOPSLA. http://ftp.squeak.org/docs/OOPSLA.
Squeak.html

Ingalls, D. (1981). Design principles behind Smalltalk. https://www.
cs.virginia.edu/%5C%7Eevans/cs655/readings/smalltalk.
html

Kay, A. (1972). A personal computer for children of all ages. http:
//www.vpri.org/pdf/hc_pers_comp_for_children.pdf

Kay, A. (1997). The computer revolution hasn’t happened yet [We
mostly used the transcription from https://moryton.blogspot.
com/2007/12/computer- revolution-hasnt-happened-yet.
html.]. https://www.youtube.com/watch?v=oKg1hTOQXoY

Kleiner, D. (2010). The Telekommunist manifesto. Network Notebooks
03. http://media.telekommunisten.net/manifesto.pdf

Mumford, L. (1964). Authoritarian and democratic technics. https://
theanarchistlibrary.org/library/lewis-mumford-authoritarian-
and-democratic-technics

http://www.casilli.fr/2018/05/18/we-need-a-political-subject-capable-to-think-an-alternative-to-digital-labor-interview-green-european-journal-vol-17-2018/
http://www.casilli.fr/2018/05/18/we-need-a-political-subject-capable-to-think-an-alternative-to-digital-labor-interview-green-european-journal-vol-17-2018/
http://www.casilli.fr/2018/05/18/we-need-a-political-subject-capable-to-think-an-alternative-to-digital-labor-interview-green-european-journal-vol-17-2018/
http://www.casilli.fr/2018/05/18/we-need-a-political-subject-capable-to-think-an-alternative-to-digital-labor-interview-green-european-journal-vol-17-2018/
https://libcom.org/library/alternative-technology-urban-reconstruction
https://libcom.org/library/alternative-technology-urban-reconstruction
http://noslebadlorah.altervista.org/parastatal.html
http://noslebadlorah.altervista.org/parastatal.html
https://dreamsongs.com/ObjectsHaveFailedNarrative.html
https://dreamsongs.com/ObjectsHaveFailedNarrative.html
http://simson.net/ref/ugh.pdf
http://simson.net/ref/ugh.pdf
https://theanarchistlibrary.org/library/science-as-radicalism-william-gillis
https://theanarchistlibrary.org/library/science-as-radicalism-william-gillis
https://www.youtube.com/watch?v=NqKyHEJe9_w
http://ftp.squeak.org/docs/OOPSLA.Squeak.html
http://ftp.squeak.org/docs/OOPSLA.Squeak.html
https://www.cs.virginia.edu/%5C%7Eevans/cs655/readings/smalltalk.html
https://www.cs.virginia.edu/%5C%7Eevans/cs655/readings/smalltalk.html
https://www.cs.virginia.edu/%5C%7Eevans/cs655/readings/smalltalk.html
http://www.vpri.org/pdf/hc_pers_comp_for_children.pdf
http://www.vpri.org/pdf/hc_pers_comp_for_children.pdf
https://moryton.blogspot.com/2007/12/computer-revolution-hasnt-happened-yet.html
https://moryton.blogspot.com/2007/12/computer-revolution-hasnt-happened-yet.html
https://moryton.blogspot.com/2007/12/computer-revolution-hasnt-happened-yet.html
https://www.youtube.com/watch?v=oKg1hTOQXoY
http://media.telekommunisten.net/manifesto.pdf
https://theanarchistlibrary.org/library/lewis-mumford-authoritarian-and-democratic-technics
https://theanarchistlibrary.org/library/lewis-mumford-authoritarian-and-democratic-technics
https://theanarchistlibrary.org/library/lewis-mumford-authoritarian-and-democratic-technics

61

Nystrom, B. (2015). What colour is your function? https://journal.
stuffwithstuff . com / 2015 / 02 / 01 / what - color - is - your -
function/

Patton, H. (2018). Reflections on “Reflections: The ecosystem is mov-
ing”. https://gitlab.com/cal- coop/netfarm/deprecated/
netfarm-docs/-/blob/master/general/reflections-on-reflections.
md

Patton, H. (2019). Masochist programming, or who’s doing the compu-
tation now? http://txti.es/masochistprogramming

Stirner, M. (1845). The unique and its property. https://theanarchistlibrary.
org/library/max-stirner-the-unique-and-its-property

Strandh, R. (2013). CLOSOS: Specification of a Lisp operating system.
http://metamodular.com/closos.pdf

Syst, R., Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L.,
& Riedl, J. (1997). Collaborative filtering to Usenet news.
Communications of The ACM - CACM.

Ungar, D. (1995). Annotating objects for transport to other worlds.
https://bluishcoder.co.nz/self/transporter.pdf

Wong, Q. (2020). Facebook reaches $52m settlement with ex-content
moderators over PTSD. https : / / www . cnet . com / news /
facebook- to- pay- 52-million- in- settlement-with- former-
content-moderators-suffering-from-ptsd/

Zawinski, J. (2000). The Lemacs/FSFmacs schism. https://www.jwz.
org/doc/lemacs.html

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://gitlab.com/cal-coop/netfarm/deprecated/netfarm-docs/-/blob/master/general/reflections-on-reflections.md
https://gitlab.com/cal-coop/netfarm/deprecated/netfarm-docs/-/blob/master/general/reflections-on-reflections.md
https://gitlab.com/cal-coop/netfarm/deprecated/netfarm-docs/-/blob/master/general/reflections-on-reflections.md
http://txti.es/masochistprogramming
https://theanarchistlibrary.org/library/max-stirner-the-unique-and-its-property
https://theanarchistlibrary.org/library/max-stirner-the-unique-and-its-property
http://metamodular.com/closos.pdf
https://bluishcoder.co.nz/self/transporter.pdf
https://www.cnet.com/news/facebook-to-pay-52-million-in-settlement-with-former-content-moderators-suffering-from-ptsd/
https://www.cnet.com/news/facebook-to-pay-52-million-in-settlement-with-former-content-moderators-suffering-from-ptsd/
https://www.cnet.com/news/facebook-to-pay-52-million-in-settlement-with-former-content-moderators-suffering-from-ptsd/
https://www.jwz.org/doc/lemacs.html
https://www.jwz.org/doc/lemacs.html

	Introduction
	Preface
	Beginning a constant analysis
	The last constant analysis
	Acknowledgements

	Liberatory technology
	Dynamic environments
	Always has been malleable
	Techniques for building farming devices
	Who's doing the computation now?
	The long run

	Peer production
	Non-hierarchical people organisation
	The Lisp ``Curse'' redemption arc
	Community effects

	Source materials

	Applied language
	Digital feudalism and social capitalism
	Digital feudalism
	Social capitalism

	The means of presentation and extension
	Conclusion

	Cooperative Software License
	Bibliography

